So sánh: 1+7+7^2+...+7^100 và 7^101-1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+7+7^2+7^3+.....+7^100
=) 7A= 7+7^2+7^3+7^4+.....+7^101
=)7A-A=6A=7^101-1
Ta có: 7^101-1 <7^101 =) 6A<B =) A<B
tính
1+5^2+5^4+5^6+...+5^200
GIÚP GIÙM ĐI MÌNH ĐANG CẦN GẤP LẮM
AI NHANH DUNG MINH H CHO
Toán lớp 7
Anh Mai 25/12/2015 lúc 11:46
Đặt A= 1+5^2+5^4+5^6+...+5^200
=> 25A= 5^2+...+5^202
=>25A-A=(5^2+..+5^202)-(1+5^2+..+5^200)
24A=5^202-1
=>
\(7A=7+7^2+....+7^{101}\)
\(7A-A=\left(7-7\right)+\left(7^2-7^2\right)+......+\left(7^{100}-7^{100}\right)+7^{101}-1\)
\(A=\frac{7^{101}-1}{6}\)
Vậy Biểu thức A = B = \(\frac{7^{101}-1}{6}\)
799+100+101=7300
Vì 300>102
Nên 7300>7102
=> 799 + 7100 + 7101 > 7102
Ta có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
\(...\)
\(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M< N\)
1/ ta co : 1/2<2/3 ; 3/4<4/5 ; 5/6<6/7 ;.......;99/100<100/101
=> A<B
Vi A<B nen A.A<A.B
2/ Vi A<B ( theo cau a) nen A.A<A.B=1/101
A.B<1/101 MA 1/101<1/100
=> A.B<1/100
A.A<1/10*1/10 . A<1/10
Đặt T=1+7+7^2+.....+7^100
7T=7+7^2+7^3+......+7^101
Lấy 7T-T ta có
7T-T=7^101-1
6T=7^101-1
T=7^101-1/6
T<7^101-1