Tìm x để biểu thức sau nhận giá trị âm
3 . ( 2x+3 ) . ( 3x - 5 )
HỨA TICK HẾTTTTTTTTTTTTTTTTTTT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
Bài 1:
a: \(x^2+5x=x\left(x+5\right)\)
Để biểu thức này âm thì \(x\left(x+5\right)< 0\)
hay -5<x<0
b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
a) Để (x - 1)(x + 2) < 0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
TH2 : \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\)
Vậy -2 < x < 1 thì (x - 1)(x + 2) < 0
b) Để (3x + 1)(2x - 3) < 0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}3x+1< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{3}\\x>\frac{3}{2}\end{cases}}\Leftrightarrow x\in\varnothing\)
TH2 : \(\hept{\begin{cases}3x+1>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-\frac{1}{3}\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-\frac{1}{3}< x< \frac{3}{2}\)
Vậy -1/3 < x < 3/2 thì (3x + 1)(2x - 3) < 0
B=3(2x+3).(3x-5)
\(\Rightarrow\) (6x+9) (3x-5) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}6x+9=0\\3x-5=0\end{cases}\Leftrightarrow\left[\begin{array}{nghiempt}6x=-9\\3x=5\end{cases}\Leftrightarrow}\left[\begin{array}{nghiempt}x=\frac{-3}{2}\\x=\frac{5}{3}\end{array}\right.}\)
vì X nhận giá trị âm nên X = \(\frac{-3}{2}\)
\(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Rightarrow\left(2x+3\right)\left(3x+5\right)< 0\)
Trường hợp 1: \(\Rightarrow\orbr{\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}}\Rightarrow\orbr{\hept{\begin{cases}x< \frac{-3}{2}\\x>\frac{5}{3}\end{cases}}}\)(Loại)
Trường hợp 2: \(\Rightarrow\orbr{\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}}\Rightarrow\orbr{\hept{\begin{cases}x>\frac{-3}{2}\\x< \frac{5}{3}\end{cases}}}\)
Vậy \(\frac{-3}{2}< x< \frac{5}{3}\) thì \(3\left(2x+3\right)\left(3x-5\right)< 0\)