Cho ΔABC cân tại A,hai đường cao AD và BE.Cho biết BE = 2k,BC = 2m,AD = n .Chứng minh: 1/k2=1/m2 + 1/n2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là điểm đối xứng của CC qua AA
Ta được \(AF=AC=AB\)
\(A,F,C\)thẳng hàng
\(\Rightarrow\Delta BFC\perp B\)
Ta có: \(\Delta ABC\)cân tại A(gt)
\(AD\perp BC\left(gt\right)\)
\(\Rightarrow BD=DC\)
mà \(AF=AC\)
\(\Rightarrow AD\)//\(BF\)mà \(AD=\frac{BF}{2}\)(tính chất đường trung bình)
Áp dụng hệ thức lượng vào \(\Delta BFC\perp B\)đường cao BE ta được:
\(\frac{1}{BE^2}=\frac{1}{BF^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{BE^2}=\frac{1}{4AD^2}+\frac{1}{BC^2}\)
\(\Leftrightarrow\frac{1}{4k^2}=\frac{1}{4n^2}+\frac{1}{4m^2}\)
\(\Leftrightarrow\frac{1}{k^2}=\frac{1}{n^2}+\frac{1}{m^2}\left(đpcm\right)\)
#Shinobu Cừu
a) Xét ΔBCE và ΔFAE có
EB=EF(gt)
\(\widehat{BEC}=\widehat{FEA}\)(hai góc đối đỉnh)
EC=EA(gt)
Do đó: ΔBCE=ΔFAE(c-g-c)
b) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
mà D,B,C thẳng hàng(gt)
nên D là trung điểm của BC
Suy ra: \(DB=\dfrac{1}{2}BC\)
mà BC=AF(ΔBCE=ΔFAE)
nên \(DB=\dfrac{1}{2}AF\)(đpcm)
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
a. Pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
AD là trung tuyến ứng cạnh huyền BC nên \(AD=\dfrac{1}{2}BC=2,5\left(cm\right)\)
b. Vì \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\) nên AMDN là hcn
Vậy AD=MN
c. ABC vuông cân A thì AD là trung tuyến cũng là p/g
Do đó AMDN là hình thoi(1)
Lại có D là trung điểm BC,DM//AC(⊥AB) nên M là trung điểm AB
Cmtt ta được N là trung điểm AC
Mà AB=AC nên AM=AC
Kết hợp (1) ta được AMDN là hình vuông
Bài 2:
Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)
\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)
Xét tứ giác ACDB có
CD//AB(cùng vuông góc với AC)
nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)
Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)
nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)