K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Gọi F là điểm đối xứng của CC qua AA

Ta được \(AF=AC=AB\)

\(A,F,C\)thẳng hàng

\(\Rightarrow\Delta BFC\perp B\)

Ta có: \(\Delta ABC\)cân tại A(gt)

\(AD\perp BC\left(gt\right)\)

\(\Rightarrow BD=DC\)

mà \(AF=AC\)

\(\Rightarrow AD\)//\(BF\)mà \(AD=\frac{BF}{2}\)(tính chất đường trung bình)

Áp dụng hệ thức lượng vào \(\Delta BFC\perp B\)đường cao BE ta được:

\(\frac{1}{BE^2}=\frac{1}{BF^2}+\frac{1}{BC^2}\)

\(\Leftrightarrow\frac{1}{BE^2}=\frac{1}{4AD^2}+\frac{1}{BC^2}\)

\(\Leftrightarrow\frac{1}{4k^2}=\frac{1}{4n^2}+\frac{1}{4m^2}\)

\(\Leftrightarrow\frac{1}{k^2}=\frac{1}{n^2}+\frac{1}{m^2}\left(đpcm\right)\)

#Shinobu Cừu

19 tháng 7 2017

hix méo có ai làm đc à @@ hay là chỉ là cái lướt nhẹ qua = =

a) Xét ΔBCE và ΔFAE có 

EB=EF(gt)

\(\widehat{BEC}=\widehat{FEA}\)(hai góc đối đỉnh)

EC=EA(gt)

Do đó: ΔBCE=ΔFAE(c-g-c)

b) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

mà D,B,C thẳng hàng(gt)

nên D là trung điểm của BC

Suy ra: \(DB=\dfrac{1}{2}BC\)

mà BC=AF(ΔBCE=ΔFAE)

nên \(DB=\dfrac{1}{2}AF\)(đpcm)

Bài 2: 

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)

6 tháng 10 2021

cảm ơn nhiều ạ

17 tháng 11 2021

a. Pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

AD là trung tuyến ứng cạnh huyền BC nên \(AD=\dfrac{1}{2}BC=2,5\left(cm\right)\)

b. Vì \(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\) nên AMDN là hcn

Vậy AD=MN

c. ABC vuông cân A thì AD là trung tuyến cũng là p/g

Do đó AMDN là hình thoi(1)

Lại có D là trung điểm BC,DM//AC(⊥AB) nên M là trung điểm AB

Cmtt ta được N là trung điểm AC

Mà AB=AC nên AM=AC

Kết hợp (1) ta được AMDN là hình vuông

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)