Cho hình thang cân ABCD ( AB//CD, AB< CD ). Hai đường chéo cắt nhau ở I, . M và N lần lượt là hìnhchiếu của B và C lên AC và BD, P là trung điểm cạnh BC.
Chứng minh tam giác MNP là tam giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Gọi giao điểm của AC và BD là O.
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà góc AOB = 600
\(\Rightarrow\) AOB là tam giác đều, COD là tam giác đều
Mặt khác: BM là đường cao của tam giác AOB nên BM cũng là trung tuyến \(\Rightarrow\)MA = MO
CN là đường cao của tam giác COD nên CN cũng là trung tuyến \(\Rightarrow\) NO = ND
Tam giác AOD có: MA = MO, NO = ND \(\Rightarrow\)\(MN=\frac{AD}{2}\)
Tam giác BMC vuông tại M có MP là trung tuyến \(\Rightarrow\) \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến \(\Rightarrow\) \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó: \(MN=MP=NP\) \(\Rightarrow\)đpcm
Gọi giao điểm của AC và BD là O
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà ˆAOB=600⇒AOB^=600⇒ tam giác AOB đều, ta giác COD đều
Mặt khác:
BM là đường cao của tam giác AOB nên BM cũng là trung tuyến ⇒⇒ MA=MO
CN là đường cao của tam giác COD nên cn cũng là trung tuyến⇒ NO=ND
Tam giác AOD có: MA=MO, NO=ND ⇒MN=AD/2
Tam giác BMC vuông tại M có MP là trung tuyến nên \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến nên \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó: MN=NP=MP