(Định lí Ta-lét, hệ quả) Cho hình thang cân ABCD, đáy lớn CD, đáy nhỏ AB. Qua A kẻ đường thẳng song song BC cắt BD tại E, qua B kẻ đường thẳng song song AD cắt AC tại F.
1/. Chứng minh DEFC là hình thang cân
2/. Tính EF, biết AB=5cm; CD=10cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là giao điểm của AC và BD
Vì AF//BC
Áp dụng hệ quả Talet :
=> HF/HB = AH/HC
Ta có : HE//HA = HB/HD
Mà AB//CD
=> HB/HA = HA/HC
=> HE /HA = HF/HB
=> EF//AB
=> EDCF là hình thang
Vì ABCD là hình thang cân
=> ADC = BCD
AD = BC
Xét ∆ACD và ∆BDC ta có :
DC chung
AD = BC
ADC = BCD
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD
=> EDCF là hình thang cân (dpcm)
b) Kéo dài EF sao cho lần lượt cắt AD tại G và BC tại O
Vì EF//DC (cmt)
=> GO//DC
Mà DC//AB
=> AB//GO//DC
=> GO là đường trung bình hình thang ABCD
=> GO = \(\frac{5\:+\:10}{2}=\:7,5\)cm
Mà GO là đường trung bình hình thang
=> G là trung điểm AD ; O là trung điểm BC
Vì GO//AB
=> GE//AB
Mà G là trung điểm AD
=> GE là đường trung bình ∆ABD
=> GE = \(\frac{5}{2}\)= 3,5 cm
Vì GO //AB
=> FO//AB
Mà O là trung điểm BC
=> FO là đường trung bình ∆ABC
=> FO = \(\frac{5}{2}=\:3,5\)cm
=> EF = 7,5 - 3,5 - 3,5 = 0,5cm
a) Xét tứ giác AFCD có
AF//CD(AB//CD, F∈AB)
AD//CF(gt)
Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét tứ giác DCBK có
DC//BK(DC//AB, K∈AB)
DK//CB(gt)
Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html
a) Do AE // BC (gt), theo định lí Ta - let, ta có :
OE/OB = OA/OC (1)
Do BF // AD (gt), theo định lí Ta - let, ta có :
OB/OD = OA/OC (2)
Từ (1) và (2),suy ra DECF là hình thang cân.
b)Ta có EF// AB//DC (gt)
AB=5cm;CD=10cm(gt
Đoạn này chả biết nói sao cho dễ hiểu,nhưng mình làm ra thì nó bằng :EF/AB=EF/CD=1/2(chẳng biết đúng hay sai đâu T.T)