K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(B\left(x\right)=\left(x+2\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{5}{2}\end{matrix}\right.\)

18 tháng 9 2021

\(B\left(x\right)=\left(x+2\right)\left(2x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2=0\\2x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{5}{2}\end{matrix}\right.\)

8 tháng 5 2022

\(\left(2x+5\right)\left(3-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)

8 tháng 5 2022

(2x+5).(3-x) = 0

=>\(\left[{}\begin{matrix}2x+5=0\\=>x=\dfrac{-5}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3-x=0\\=>x=3\end{matrix}\right.\)

 

7 tháng 6 2020

\(\left(2x-3\right)\left(1^5-x\right)\)

Đa thức có nghiệm <=> \(\left(2x-3\right)\left(1^5-x\right)=0\)

                                <=> \(\orbr{\begin{cases}2x-3=0\\1^5-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}2x=3\\1-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)

Vậy nghiệm của đa thức là 3/2 và 1

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

9 tháng 3 2022

Ta có \(A\left(x\right)=\dfrac{1}{3}x+1=0\Leftrightarrow x=-1:\dfrac{1}{3}=-3\)

\(B\left(x\right)=-\dfrac{3}{4}x+\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}\left(-\dfrac{3}{4}\right)=4\)

\(C=\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow x=2;x=-1\)

\(D\left(x\right)-4x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)

NM
10 tháng 5 2021

ta có 

\(g\left(x\right)=25-x^2\)

\(\Leftrightarrow g\left(x\right)=\left(5-x\right)\left(5+x\right)=0\Leftrightarrow\orbr{\begin{cases}5-x=0\\5+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)Vậy đa thức g(x) có hai nghiệm x=-5 và x=5