So sánh 2√2 + √3 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^9}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^8}\)
\(\Rightarrow3A-A=1-\frac{1}{3^9}\)
\(\Rightarrow2A=1-\frac{1}{3^9}\)
=> A = \(\frac{1-\frac{1}{3^9}}{2}\)
Mà : \(1-\frac{1}{3^9}< 1\)
Nên : A < \(\frac{1}{2}\)
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
- 29 < 39
- 32010 > 22010
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
a
2/5> 2/7
5/9<5/6
11/2>11/3
cách so sánh :
sét mẫu số của phân số này bé hơn mẫu số của phân số kia thì phân số này lớn hơn
mẫu số của phân số này lớn hơn mẫu số của phân số kia thì phân số này bé hơn
\(\left(2\sqrt{2}+\sqrt{3}\right)^2=11+4\sqrt{6};9^2=81=11+70\\ \left(4\sqrt{6}\right)^2=96< 70^2=4900\\ \Leftrightarrow11+4\sqrt{6}< 11+70\\ \Leftrightarrow2\sqrt{2}+\sqrt{3}< 9\)