Phân tích đa thức thành nhân tử
ab(x2+y2)+xy(a2+b2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[a^2+b^2+2-2\left(ab-1\right)\right]\left[a^2+b^2+2+2\left(ab-1\right)\right]\\ =\left(a^2+b^2-2ab+4\right)\left(a^2+b^2+2ab\right)\\ =\left(a+b\right)^2\left(a^2+b^2-2ab+4\right)\)
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
\(4\left(x^2y^2+z^2t^2+2xyzt\right)-\left(x^2+y^2-z^2-t^2\right)^2\)
\(=\left(2xy-2tz\right)^2-\left(x^2+y^2-z^2-t^2\right)\)
\(=\left(2xy-2tz-x^2-y^2+z^2+t^2\right)\left(2xy-2tz+x^2+y^2-z^2-t^2\right)\)
\(=\left[-\left(x-y\right)^2+\left(z-t\right)^2\right]\left[\left(x+y\right)^2-\left(t+z\right)^2\right]\)
\(=-\left(x-y-z+t\right)\left(x-y+z-t\right)\left(x+y-t-z\right)\left(x+y+t+z\right)\)
4(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)24(x2y2+z2t2+2xyzt)−(x2+y2−z2−t2)2
=[2(xy+zt)]2−(x2+y2−z2−t2)2=[2(xy+zt)]2−(x2+y2−z2−t2)2
=(2xy+2zt)2−(x2+y2−z2−t2)2=(2xy+2zt)2−(x2+y2−z2−t2)2
=(2xy+2zt−x2−y2+z2+t2)(2xy+2zt+x2+y2−z2−t2)2
`16x^2z^2+y^2-z^2-16x^2y^2`
`=16x^2(z^2-y^2)+(y^2-z^2)`
`=16x^2(z-y)(y+z)+(y-z)(y+z)`
`=(y+z)[16x^2(z-y)+y-z]`
`=(y+z)(16x^2z-16x^2y+y-z)`
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
\(x^2-2x-24\\ =x^2-2x+1-25\\ =\left(x-1\right)^2-5^2\\ =\left(x-1-5\right)\left(x-1+5\right)\\ =\left(x-6\right)\left(x+4\right)\)
-x2 - 5x + 24
= -x2 + 3x - 8x + 24
= -x(x + 3) - 8(x - 3)
= (-x - 8)(x + 3)
Ta có: (x2+6x-5)(x2+6x+3)-20
= [(x2+6x-1)-4][(x2+6x-1)+4]-20
= (x2+6x-1)2-16-20
= (x2+6x-1)2-36
= (x2+6x-7)(x2+6x-5)
= (x+7)(x-1)(x2+6x-5)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)
ab(x2+y2)+xy(a2+b2)
\(=abx^2+aby^2+a^2xy+b^2xy=\left(abx^2+a^2xy\right)+\left(aby^2+b^2xy\right).\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)=\left(ax+by\right).\left(ay+bx\right)\)