K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=10x^2z-10xyz=10xz\left(x-y\right)=10\cdot124\cdot2\cdot\left(124-24\right)\)

\(=20\cdot124\cdot100\)

\(=248000\)

17 tháng 6 2018

a,A=5x2z-10xyz+5y2z

=5z(x2-2xy+y2)

=5z(x-y)2

Thay x=124,y=24,z=2 vào A ta được:

A=5.2(124-24)2=10.1002=10000

b,B=2x2+2y2-x2z+z-y2z-2

=2(x2+y2)-z(x2+y2)+(z-2)

=(2-z)(x2+y2)-(2-z)

=(2-z)(x2+y2-1)

Thay x=1,y=1,z=-1 vào B

B=(2+1)(12+12-1)=3

c, C=x2-y2+2y-1

=x2-(y2-2y+1)

=x2-(y-1)2

=(x-y+1)(x+y-1)

=(75-26+1)(75+26-1)

=50.100=5000

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

17 tháng 10 2016

\(A=5x^2z-10xyz+5y^2z=5z\left(x^2-2xy+y^2\right)=5z\left(x-y\right)^2\)

Thay x = 124, y = 24, z = 2 vào A, ta có:

\(5\times2\times\left(124-24\right)^2=10\times100^2=10\times10000=100000\)

Vậy A = 10 000 khi x = 124, y = 24, z = 2.

\(B=2x^2+2y^2-x^2z-y^2z+z-2=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)=\left(2-x\right)\left(x^2+y^2-1\right)\)

Thay x = 1, y = 1, z = - 1 vào B, ta có:

\(B=\left[2-\left(-1\right)\right]\left(1^2+1^2-1\right)=3\times1=3\)

Vậy B = 3 khi x = 1, y = 1, z = - 1.

 

21 tháng 9 2018

1, \(x\div y\div z=3\div8\div5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)

\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{x}{3}=\frac{y}{8}=\frac{z}{10}=\frac{14}{7}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot8=16\\z=2\cdot5=10\end{cases}}\)

vậy_

các phần sau tương tự

21 tháng 9 2018

1, \(x:y:z=3:8:5;3x+y-2z=14\)

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)

\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\\\frac{y}{8}=2\Rightarrow y=16\\\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\end{cases}}\)

Vậy....

2, \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3};4x-3y-2z=36\)

\(\Rightarrow\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=\frac{-36}{8}=\frac{-9}{4}\)

Làm tương tự để tìm x;y;z

3, \(x:y:z=3:5:\left(-2\right);5x-y+3z=124\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{\left(-2\right)}\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

\(\Rightarrow\hept{\begin{cases}\frac{5x}{15}=31\Rightarrow5x=465\Rightarrow x=93\\\frac{y}{5}=31\Rightarrow y=155\\\frac{3z}{-6}=31\Rightarrow3z=-186\Rightarrow z=-62\end{cases}}\)

Vậy .....

13 tháng 9 2017

Theo đề, ta có:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) và 4x - 3y + 2z = 36

\(\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta lại có:

\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

Suy ra:

\(\dfrac{x}{1}=9\Rightarrow x=9\)

\(\dfrac{y}{2}=9\Rightarrow y=18\)

\(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x, y, z lần lượt là: 9; 18; 27

6 tháng 8 2017

Bạn viết sai đề nhiều quá:v

a) thiếu đề

b) sửa: \(5x-y+3z=124\)

Theo đề bài ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

\(\Rightarrow\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}\)

\(=\dfrac{5x-y+3z}{15-5-6}=\dfrac{124}{4}=31\)

\(\Rightarrow\left\{{}\begin{matrix}x=31.3=93\\y=31.5=155\\z=31.-2=-62\end{matrix}\right.\)

Vậy....

6 tháng 8 2017

a) x:y:z=1:2:3 va 4x-3y+2z=36

sorry nha mk đang gấp