K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

chứng minh rằng 

a) hai số lẻ liên tiếp 

b) 2N+5 VÀ 3n+7

11 tháng 11 2015

a,gọi 2 STN liên tiếp là a và a+1

gọi ước chung của hai số là d. Ta có:

       (a+1)-a chia hết cho d

  =>1 chia hết cho d=>d=1

Vậy a và a+1 nguyên tố cùng nhau

b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d

Ta có: (a+2)-a chhia hết cho d

      =>2 chia hết cho d

=>d=1 hoặc 2

d khác 2 vì d là ước của số lẻ

Vậy d=1 =>a và a+2 nguyên tố cùng nhau

tick đi

11 tháng 10 2015

Gọi 2 số tự nhiên lẻ là a và a+2, ƯC(a,a+2)=d

=>a chia hết cho d( vì a lẻ=>d lẻ)

    a+2 chia hết cho d

=>a+2-a chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Vì d lẻ

=>d=1

=>ƯC(a,a+2)=1

=>a và a+2 là 2 số nguyên tố cùng nhau

=>ĐPCM

30 tháng 8 2015

Gọi 2 STN liên tiếp là a và a+1

Đặt ƯCLN(a, a+1) = d

Ta có : a chia hết cho d

            a+1 chia hết cho d

=> (a+1) - a  chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> a và a+1 nguyên tố cùng nhau

hay 2 STN liên tiếp bất kỳ luôn nguyên tố cùng nhau

 

27 tháng 11 2015

Gọi 2 số tự nhiên đó là a;a+1 và ƯCLN của chúng = d

Ta có: a+1 chia hết cho d

a chia hết cho d

=> (a+1)-a=1 chia hết cho d

=> d thuộc Ư(1)={1}

Vì ƯCLN(a;a+1)=1

=> ĐPCM

27 tháng 11 2015

Gọi 2 số tự nhiên liên tiếp là : a và a+1 ; UCLN(a:a+1)=d

Ta có : a chia hết cho d

           a+1 chia hết cho d

=>(a+1) - a chia hết cho d

=>1 chia hết cho d

=> d =1

Vậy bất kì 2 số tự nhiên nào cũng nguyên tố cùng nhau

 

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017