K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

Bài này làm cũng dài lắm. Mai mình làm cho

16 tháng 11 2016

         a(b3-c3) -b(b3-c3+a3-b3)+c(a3-b3)

=a(b3-c3)-b(b3-c3)-b(a3-b3)+c(a3-b3)

=(b3-c3)(a-b)-(a3-b3)(b-c)

=(b-c)(b2+cb+c2)(a-b)-(a-b)(a2+ab+b2)(b-c)

=(b-c)(a-b)(b2+Cb+c2-a2-ab-b2)

=(b-c)(a-b)(c2+cb-ab-a2)

=(b-c)(a-b)[(c-a)(c+a)+b(c-a)]

=(b-c)(a-b)(c-a)(a+c+b)

(x+2).(x+3).(x+4).(x+5)−24

=(x2+7x+10).(x2+7x+12)−24

=(x2+7x+10).(x2+7x+10+2)−24

Đặt x2+7x+10=t, ta có

t.(t+2)−24

=t2+2t−24

=t2+2t+1−25

=(t−1)2−25

=(t−1−5)(t−1+5)

=(t−6)(t+4)

=(x2+7x+10−6)(x2+7x+10+4)

(x2+7x+4)(x2+7x+14)

P/s tham khảo nha

\(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

\(\Leftrightarrow\left(x^2+7x+10\right).\left(x^2+7x+10+2\right)-24\)

Đặt \(x^2+7x+10=t\), ta có

\(t.\left(t+2\right)-24\)

\(\Leftrightarrow t^2+2t-24\)

\(\Leftrightarrow t^2+2t+1-25\)

\(\Leftrightarrow\left(t-1\right)^2-25\)

\(\Leftrightarrow\left(t-1-5\right)\left(t-1+5\right)\)

\(\Leftrightarrow\left(t-6\right)\left(t+4\right)\)

\(\Rightarrow\left(x^2+7x+10-6\right)\left(x^2+7x+10+4\right)\)

\(\Leftrightarrow\left(x^2+7x+4\right)\left(x^2+7x+14\right)\)

P/s tham khảo nha

1 tháng 11 2018

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)

\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)

\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)

17 tháng 11 2019

x ở đâu ra vại @

10 tháng 1 2023

Bài `1:`

`a)3x^3+6x^2=3x^2(x+2)`

`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`

Bài `2:`

`a)(2x-1)^2-25=0`

`<=>(2x-1-5)(2x-1+5)=0`

`<=>(2x-6)(2x+4)=0`

`<=>[(x=3),(x=-2):}`

`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`

`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`

`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`

`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`

29 tháng 1 2023

\(a.\) \(ax^2-a^2x-x+a\)

\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)

\(=ax\left(x-a\right)-\left(x-a\right)\)

\(=\left(ax-1\right)\left(x-a\right)\)

\(b.\) \(18x^3-12x^2+2x\)

\(=2x\left(9x^2-6x+1\right)\)

\(=2x\left(3x-1\right)^2\)

\(c.\) \(x^3-5x^2-4x+20\)

\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)

\(=x^2\left(x-5\right)-4\left(x-5\right)\)

\(=\left(x^2-4\right)\left(x-5\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)

\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)

\(=x^2+15x+7x+105+15\)

\(=x^2+22x+120\)

\(=\left(x+10\right)\left(x+12\right)\)

29 tháng 1 2023

loading...