CMR: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
Ta có:
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)
\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)
Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với
Ta có :
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)\)
\(=100-1-\dfrac{1}{2}-\dfrac{1}{3}-..................-\dfrac{1}{100}\)
\(=99-\dfrac{1}{2}-\dfrac{1}{3}-................-\dfrac{1}{100}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+..................+\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}+\dfrac{2}{3}+.................+\dfrac{99}{100}\)
Vậy :\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+....................+\dfrac{99}{100}\)
\(\Rightarrowđpcm\)
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
Lời giải:
Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)
\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)
\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)
$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$
Ta có đpcm.
Giải:
Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu
Ta có:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\)
Chúc bạn học tốt!
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{3^2}< \dfrac{1}{2\cdot3};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \RightarrowĐpcm\)