Tim nghiem nguyen
a)2\(x^2+3xy-2y^2=7\)
b)\(x^3-y^3=91\)
c)\(x^2-xy=6x-5y-8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
a. 3xy + x - y = 1
<=> 9xy + 3x - 3y = 3
<=> 3x(3y+1) - (3y+1) = 2
<=> (3x-1)(3y+1)=2
Xét các trường hợp ta có x = 1, y = 0
Vậy nghiệm của pt là (1;0) ; (0;-1)
a) Pt\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\). Đến đây là pt trình tích với x,y nguyên, xét các TH là ra
b)\(\left(x-y\right)\left(x^2+xy+y^2\right)=91\). Đến đây cũng là pt tích nhưng chú ý: \(x^2+xy+y^2\ge0\) rồi giải ra
c) Pt\(\Leftrightarrow x^2-x\left(y+6\right)+5y+8=0\) là pt bậc 2 ẩn x có:
\(\Delta=\left(y+6\right)^2-4\left(5y+8\right)=y^2-8y+4.\)Để pt có nghiệm nguyên thì:
\(\Delta\)là số chính phương. Thật vậy, đặt \(\Delta=m^2\left(m\in Z\right)\Leftrightarrow y^2-8y+4=m^2\Leftrightarrow\left(y-4\right)^2-m^2=12\Leftrightarrow\left(y-m-4\right)\left(y+m-4\right)=12\)
Đến đây giải pt tích, chú ý: y-m-4 và y+m-4 cùng tính chẵn lẻ