K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

\(A=x^2-2x-x+2+3=x\left(x-2\right)-\left(x-2\right)+3=\left(x-2\right).\left(x-1\right)+3\)

Ta có \(x\ge2\Rightarrow x-2\ge0\)

\(x\ge2\Rightarrow x-1\ge1\)

Do đó \(\left(x-2\right).\left(x-1\right)\ge0\)

\(\Rightarrow A=\left(x-2\right)\left(x-1\right)+3\ge3\)

Vậy GTNN của A= 3 khi x-2=0 hay x=2

\(A=2\left|x-5\right|-2015\ge-2015\)

\(Min_A=-2015\Leftrightarrow x=5\)

\(B=205-\left|3x-5\right|\le205\)

\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)

30 tháng 7 2017

có cách làm củ thể hơn k bạn

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

9 tháng 10 2019

a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left[\left(x+4\right)^2-21\right]\)

\(=-\left(x+4\right)^2+21\le21\)

Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)

\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)

\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)

Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3

 

6 tháng 1 2021

B=\(4x^2-4x+1+x^2+4x+4=5x^2+5\)

                                                  \(=5\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\)

\(\Leftrightarrow B\ge5\forall x\)

dấu'=' xảy ra \(\Leftrightarrow x^2+1=0\Leftrightarrow x=0\)

vậy B đạt GTNN =5 khi x=0

Bài 2: 

a) Ta có: \(A=x^2-3x+5\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

hay \(x=\dfrac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-3x+5\) là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

25 tháng 8 2019

\(\frac{x^2+3x+1}{x}=x+3+\frac{1}{x}\ge2+3\Rightarrow A\ge5\)

\(\Rightarrow MinA=5\Leftrightarrow x=1\)