K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

Giả sử \(\sqrt{3}\) là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho:
\(\dfrac{m}{n}=\sqrt{3}\left(1\right)\)
với \(\dfrac{m}{n}\) là phân số tối giản hay m và n có ước chung lớn nhất bằng 1
Khi đó từ \(\left(1\right)\Leftrightarrow m=n\sqrt{3}\Leftrightarrow m^2=3n^2\left(2\right)\)
Từ đó suy ra \(m^2\) chia hết cho 3 nên m phải chia hết cho 3\(\left(3\right)\)
Do đó tồn tại số nguyên k sao cho \(m=3k\) Thay vào \(\left(2\right)\) ta có thể suy ra \(n^2=3k^2\) hay \(n=\sqrt{3}k\)
Do k là số nguyên nên suy ra n không nguyên.
Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để \(\dfrac{m}{n}=\sqrt{3}\) Vậy \(\sqrt{3}\) không là số hữu tỉ \(\left(\sqrt{3}\notin Q\right)\)

18 tháng 9 2021

cảm ơn ạ

 

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

8 tháng 10 2019

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

17 tháng 10 2018

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

1 tháng 9 2017

Bn tham khảo nè: 

 giả sử x + y = a với a là số hữu tỉ 
=> y = a - x 
mà a và x là hữu tỉ nên a - x cũng hữu tỉ 
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n) 
=> y cũng hữu tỉ 
vô lý 

19 tháng 4 2020

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

13 tháng 8 2016
Dùng quy nạp chứng minh đi bạn
29 tháng 6 2020

có 1 định lý luôn tồn tại A;B nguyên sao cho: 

\(\left(3+\sqrt{5}\right)^n=A+B\sqrt{x};\left(3-\sqrt{5}\right)^n=A-B\sqrt{x}\text{ cộng lại suy ra đpcm}\)

30 tháng 6 2020

Bạn tham khảo tại đây

https://olm.vn/hoi-dap/detail/56101917412.html

Không chắc lắm đâu nhé !

Câu hỏi của Quỳnh Hương - Toán lớp 9 - Học toán với OnlineMath

9 tháng 8 2020

Bài làm:

a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ

=> \(1+\sqrt{2}\) vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ

b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ

=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ

=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ