K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

câu 1 :trong mp tọa độ Oxy cho 2 điểm A(-1;2) và B(5;4). giả sử có 1 con kiến đi từ A theo 1 đường thẳng đến 1 điểm M trên trục Ox, sau đó nó đi tiếp  theo con đường  thẳng từ M đến điểm B. Tìm tọa độ điểm M trên trục Ox để quãng đường mà con kiến đi từ A đến B là ngắn nhất.câu 2: cho đường thẳng d: 2x-y+2=0 và d': 2x-y-6=0. phép đối xứng tâm biến đường thẳng d thành d' và biến...
Đọc tiếp

câu 1 :trong mp tọa độ Oxy cho 2 điểm A(-1;2) và B(5;4). giả sử có 1 con kiến đi từ A theo 1 đường thẳng đến 1 điểm M trên trục Ox, sau đó nó đi tiếp  theo con đường  thẳng từ M đến điểm B. Tìm tọa độ điểm M trên trục Ox để quãng đường mà con kiến đi từ A đến B là ngắn nhất.

câu 2: cho đường thẳng d: 2x-y+2=0 và d': 2x-y-6=0. phép đối xứng tâm biến đường thẳng d thành d' và biến trục Ox thành chính nó có tâm đối xứng là?

câu 3 : trong mp oxy cho 3 điểm A(1;1) ,B(4;1) ,c(4;3) .phép quay tâm O góc quay 90* biến tam giác ABC thành tam giác A'B'C' có tâm đường tròn ngoại tiếp là?

câu 4; trong mp Oxy cho đường thẳng d:2x+3y-3=0. ảnh của  đt d qua phép vị tự tâm O tỉ số k=2 biến đường thẳng d thành đường thẳng có phương trình là?

cau5: cho các chữ cái dưới đây . có mấy chữ cái có trục đối xứng: A, B ,C ,D, Đ ,E, G, H, I ,K ,L?

 

1
11 tháng 11 2016

câu này mà ở lớp 1 cả lớp 5 còn ko giải được.

mà hình như nó còn chẳng phải toán

23 tháng 4 2023

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

23 tháng 4 2023
23 tháng 4 2023

Tên quen ta :))