K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

bình phương (1/a+1/b+1/c) rồi áp dụng HĐT tính bình thường

19 tháng 10 2015

a + b + c = 0 => c = -a - b ; b= -a - c ; a =  - b - c 

Thay vào Q ta có :

\(Q=\frac{1}{a^2+b^2-\left(a+b\right)^2}+\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{a^2+c^2-\left(a+c\right)^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{c^2+a^2-c^2-a^2-2ac}\)

\(Q=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c+a+b}{-2abc}=0\)

25 tháng 7 2016

1/2 nhá

13 tháng 10 2019

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

21 tháng 12 2017

a+b+c = 0 <=> (a+b+c)^2 = 0

<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1

<=> ab+bc+ca = -1/2

<=> (ab+bc+ca)^2 = 1/4

<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4

Có : a^2+b^2+c^2 = 1

<=> (a^2+b^2+c^2) = 1

<=>  A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2

Vậy A = 1/2

k mk nha