K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

\(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)=BS17+\left[\left(BS17-1\right)^n-1\right]=BS17+BS17=BS17\)(vì n chẵn) (1)

\(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)=BS19+\left[\left(BS19-3\right)^n-3^n\right]=BS19+BS19=BS19\)(vì n chẵn) (2)

Mà (19;17)=1 (3)

Từ (1),(2) và (3) suy ra: \(20^n+16^n-3^n-1⋮323\)

10 tháng 5 2017

vì n chẵn => n=2k (k thuộc N)

\(\Rightarrow A=20^n+16^n-3^n-1=20^{2k}+16^{2k}-3^{2k}-1\)

\(=\left(20^{2k}-1\right)+\left(16^{2k}-3^{2k}\right)\)

+Có: \(20^{2k}-1⋮20-1=19\forall k\in N\)

\(16^{2k}-3^{2k}⋮\left(16+3\right)\left(16-3\right)\in k\forall N\Rightarrow16^{2k}-3^{2k}⋮19\)

=> A chia hết cho 19

\(A=\left(20^{2k}-3^{2k}\right)+\left(16^{2k}-1\right)\)

tương tự ta có \(20^{2k}-3^{2k}⋮17\)và \(16^{2k}-1⋮17\)

suy ra A chia hết cho 17 => A chia hết cho 17 và 19

Mà ƯCLN(17,19)=1 

=> A chia hết cho 323

10 tháng 5 2017

minh ko hieu cho co

3 tháng 1 2017

đề sai : đề thật nè  Chứng minh rằng m^3+20m chia hết cho 48 

  m = 2k thì 
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5) 
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong. 
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2 
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2 
Vậy k(k^2 + 5) chia hết cho 2 
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3 
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3 
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3 
Vậy k(k^2 + 5) chia hết cho 3 
=>dpcm

tk nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

Lập luận quá sắc nét bái phục

7 tháng 4 2015

bài này đơn giản nhưng  bạn chỉ hỏi thành 6b LDK nên thôi vây

14 tháng 4 2016

đề sai phải là 20n+16n-3n-1 mới đúng

19 tháng 3 2017

20n+16n-3n-1  \(⋮\)321

vì 323=17.19

Ta thấy : 20n+16n-3n-1

            =(20n-1) + (16n-3n)

             20n-1\(⋮\)19 với n chẵn

 \(\Rightarrow\)(20n-1) + ( 16-3n)\(⋮\)19      (1)

Mặt khác : 20n+16n-3n-1

              =( 20n-3n) + ( 16n-1)

               20n-3n\(⋮\)17 với n chẵn 

               16n-1  \(⋮\)17 với n chẵn 

\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17     (2)

Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19

\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)