K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

8 tháng 10 2021

A B C D E I K M N

a/

ED=EA; DC=DA => ED là đường trung bình của tg ABC \(\Rightarrow ED=\frac{BC}{2}\Rightarrow BC=2.ED\)

=> ED//BC => BEDC là hình thang mà

MB=ME; NC=ND => MN là đường trung bình của hình thang BEDC \(\Rightarrow MN=\frac{ED+BC}{2}\)

b/

MN là đường trung bình của hình thang BEDC => ED//MN//BC

Xét tg BDE có

MB=ME; MI//ED => IB=ID (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> MI là đường trung bình của tg BDE \(\Rightarrow MI=\frac{ED}{2}\) (1)

Chứng minh tương tự ta cũng có KN là đường trung bình của tg CDE \(\Rightarrow KN=\frac{ED}{2}\) (2)

Ta có \(IK=MN-\left(MI+KN\right)=\frac{ED+BC}{2}-\left(MI+KN\right)=\)

\(=\frac{ED+2.ED}{2}-\left(\frac{ED}{2}+\frac{ED}{2}\right)=\frac{ED}{2}\) (3)

Từ (1) (2) và (3) => MI=IK=KN

24 tháng 9 2018

Con tham khảo tại link dưới đây nhé:

Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath

4 tháng 10 2016

:a,nối E với D,ED là đường trung bình nên ED=4cm 
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6 
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED 
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*) 
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến) 
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED 
Bài2:gọi đoạn nối trung điểm 2 cạnh AB và AC của tứ giác ABCD là MN,ta có MN=1/2 BC,trong ∆BCD có BC<BD+CD nên MN< BD+CD(bất đẳng thức tam giác) 
Bai3:gọi tứ giác đó là ABCD,MN là cạnh nối trung điểm,kéo dài AN giao DC tại E,ta có AB=CE ,nên ta có ∆ABN=∆CEN =>gocBAN=góc CEN.Mà 2 góc nằm ở vị trí so le trong nên AB // DC => ABCD là hình thang. 
Bai4:a,kẻ BK // AD,ta có hình bình hành ABKD =>IE là hiệu 2 đáy,kẻ đường cao BH',ta có ∆BCH'=∆ADH,mà ∆BIE cân nên H' là trung điểm IE =>HD=1/2(DE-AB) 
b,kẻ BG // với AC,ta có hình bình hành ABGC =>AB=CG 
vì ABH'H là hình vuông=>AB=HH'=>HH'=CG mà H'C=DH nên ta có 
HH'+H'C=CG+DH mà (HH'+H'C)+(CG+DH)=DG=DC+AB 
=>HH'+H'C=HC=1/2(DC+AB) 
Bài5:Từ M kẻ MM' vuông góc với d,ta có MM'//BB'//CC' 
mà M là trung điểm BC nên MM' là đường trung bình hình thang BB'C'C,ta lại có O là trung điểm AM=>∆AA'O=∆MM'O nên AA'=MM' 
ta có MM'=AA'=(BB'+CC'):2 
Bài6:Kẻ MN//AB//DC =>MN=(7+3)/2=5 =>∆ANM và∆DNM cân tại N 
góc AMN=(180độ-gócANM)/2 
góc DMN=(180độ-gócDNM)/2 
góc AMN+góc DMN=(180độ-gócANM+180độ-gócDNM)/2 
=(360độ-180độ)/2=90độ=gócAMD=>AM vuông góc với DM 
còn 3 bài cuối bác nào khỏe tay thì giúp cháu nó hộ em với,em mỏi tayquá rồi 
Chi tiết thêm: 
lâu lắm mới vào lại câu này 
Bài7:từ C kẻ đường vuông góc với BE tại M 
kéo dài CM giao AB tại N 
Ta có ∆CME đồng dạng với ∆CAN (gg) 
=>góc CEM= góc CNA 
vì góc CEM= góc AEB (đối đỉnh) 
=> góc CNA= góc AEB 
=>∆CAN=∆BAE(góc nhọn,cạnh góc vuông,góc 90º) 
=>AE=AN=AD 
vì AN=AD 
mà AK // CN 
=> AK là đường trung bình hình thang CIDN 
=>IK=KC 

5 tháng 10 2016

cam on ban nha

13 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ∆ ABC ta có: E là trung điểm của cạnh AB

D là trung điểm của cạnh AC

Nên ED là đường trung bình của  ∆ ABC

⇒ ED // BC và ED = 1/2 BC

(tính chất đường trung bình của tam giác)

+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.

Trong hình thang BCDE, ta có: BC // DE

M là trung điểm cạnh bên BE

N là trung điểm cạnh bên CD

Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

(tính chất đường trung bình hình thang)

Trong  ∆ BED, ta có: M là trung điểm BE

MI // DE

Suy ra: MI là đường trung bình của  ∆ BED

⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

Trong  ∆ CED ta có: N là trung điểm CD

NK // DE

Suy ra: NK là đường trung bình của  ∆ CED

⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)

IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC

⇒ MI = IK = KN = 1/4 BC