Cho S = 5 + 5^2 + 5^3 + 5^4 + .... + 5^99
a) Chứng tỏ rằng S chia hết cho 31
b) Chứng tỏ rằng S không chia hết cho 30
c) Tìm x biết 25^x - 5 = 4 x S
Làm ơn giúp em các anh chị ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 5 + 52 + 53 + 54 + .......... + 599
a) S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )
= 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )
= ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )
= 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )
c ) 5S = 52 + 53 + .. + 5100
=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599
= 5100 - 5
25x - 5 = 4S
=> 25x - 5 = 5100 - 5
=> 25x = 5100
=> 25x = ( 52 )50
=> 25x = 2550
=> x = 50
Vậy x = 50
Câu b quên cách làm rồi
a) S=5+52+53+54+...+599
=(5+52+53)+(54+55+56)+...+(597+598+599)
=5(1+5+52)+54(1+5+52)+...+597(1+5+52)
=5.31+54.31+...+597.31
=31(5+54+...+597)⋮31(đpcm)
b) S=5+52+53+54+...+599
=5+(52+53)+(54+55)+...+(598+599)
=5+5(5+52)+53(5+52)+...+597(5+52)
=5+5.30+53.30+...+597.30
=5+30.(5+53+...+597)
Mà 5⋮̸30 nên S⋮̸30(đpcm)
c) Ta có: 5S=52+53+54+55+...+5100
5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)
4S=5100−5
⇒25x−5=5100−5
⇒25x=5100
⇒25x=2550
⇒x=50
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
1/5 S = 1+5+5^2+...+5^2012
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)
mà 1+5+5^2=31=>1+5+5^2 chia hết 31
=> mổi số hạng của 1/5 S chia hết 31
=> S chia hết 31
Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả
ta có : S=5+5^2+5^3+5^4+......+5^2013 ( có 2013 số hạng )
S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013) ( có 671 nhóm)
S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)
S=(5+5^2+.....+5^2011).31
S chia hết cho 31
a) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5S=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(\Rightarrow4S=5^{101}-5\)
\(\Rightarrow S=\frac{5^{101}-5}{4}\)
b) \(4S+5=5^x\)
\(\Rightarrow5^{101}-5+5=5^x\)
\(\Rightarrow5^{101}=5^x\)
\(\Rightarrow x=101\)
Vậy x = 101
c) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow S=\left(5+25\right)+5^2.\left(5+5^2\right)+...+5^{98}.\left(5+5^2\right)\)
\(\Rightarrow S=30+5^2.30+...+5^{98}.30\)
\(\Rightarrow S=\left(1+5^2+...+5^{98}\right).30⋮30\)
\(\Rightarrow S⋮30\left(đpcm\right)\)
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)