K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

S = 5 + 52 + 53 + 54 + .......... + 599

a)  S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )

    = 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )

     = ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )

      = 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )

c ) 5S = 52 + 53 + .. + 5100

=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599

                         = 5100 - 5 

25x - 5 = 4S

=> 25x - 5 = 5100 - 5

=> 25x = 5100

=> 25x = ( 52 )50

=> 25x = 2550

=> x = 50

Vậy  x = 50

Câu b quên cách làm rồi     

a) S=5+52+53+54+...+599

=(5+52+53)+(54+55+56)+...+(597+598+599)

=5(1+5+52)+54(1+5+52)+...+597(1+5+52)

=5.31+54.31+...+597.31

=31(5+54+...+597)⋮31(đpcm)

b) S=5+52+53+54+...+599

=5+(52+53)+(54+55)+...+(598+599)

=5+5(5+52)+53(5+52)+...+597(5+52)

=5+5.30+53.30+...+597.30

=5+30.(5+53+...+597)

Mà 5⋮̸30 nên S⋮̸30(đpcm)

c) Ta có: 5S=52+53+54+55+...+5100

5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)

4S=5100−5

⇒25x−5=5100−5

⇒25x=5100

⇒25x=2550

⇒x=50

9 tháng 9 2018

a) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{97}.31\)

\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

b) \(S=5+5^2+5^3+5^4+...+5^{99}\)

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)

\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)

\(=5+5.30+5^3.30+...+5^{97}.30\)

\(=5+30.\left(5+5^3+...+5^{97}\right)\)

\(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)

c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)

\(4S=5^{100}-5\)

\(\Rightarrow25^x-5=5^{100}-5\)

\(\Rightarrow25^x=5^{100}\)

\(\Rightarrow25^x=25^{50}\)

\(\Rightarrow x=50\)

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

29 tháng 10 2017

1/5 S = 1+5+5^2+...+5^2012

         =1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)

        mà 1+5+5^2=31=>1+5+5^2 chia hết 31

        => mổi số hạng của 1/5 S chia hết 31

       => S chia hết 31

Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả

18 tháng 11 2017

ta có : S=5+5^2+5^3+5^4+......+5^2013  ( có 2013 số hạng )

           S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013)   ( có 671 nhóm)

           S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)

           S=(5+5^2+.....+5^2011).31

            S chia hết cho 31                

14 tháng 10 2018

a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.

Chắc là đề cho \(\overline{abc}⋮3\)

b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)

Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.

Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.

Chúc bạn học tốt!