Tính A=1.2+2.3+3.4+4.5+.....+99.100
dấu.là dấu nhân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 1.2+2.3+3.4+......+99.100
Gấp E lên 3 lần ta có:
E . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
E . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
E . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 E . 3 = 99.100.101
E = 99.100.101 : 3
E = 33.100.101
E = 333 300
k mik nha
E = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3E = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)
=> 3E = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3E = 99.100.101
=> E = 333300
TL:
a)\(2+4+6+...+2000=\frac{\left(2+2000\right).\left[\left(2000-2\right):2+1\right]}{2}\)
\(=1001000\)
Câu b tương tự nha bạn:)
c) Đặt 1.2+2.3+....+99.100 =A
\(3A=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+...99.100.101-98.99.100\)
\(3A=99.100.101\)
\(A=333300\)
Vậy .....
a) Đặt A= 2+4+6+...+1998+2000
Ta có: A=(2+2000).1000:2
=> A=2002.1000:2
=> A=2002000:2
=> A=1001000
b) Đặt B= 5+9+13+...+1997+2001
=> B=(2001+5).500:2
=> B=2006.500:2
=> B=1003000:2
=> B=501500
c)Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
=> 3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 => 3S = 3.33.100.101
=> S=33.100.101= 333300
ta chia S đó ra thành 2 S
cách chia như sao:
S=1.2+2.3+3.4+4.5+...+2014.2015
<=>S=(1+2+3+4+...+2014).(2+3+4+5+...+2015) rồi ta chia ra 2 S
S=(1+2+3+4+...+2014)vàS=(2+3+4+5+...+2015)
phần còn lại bạn tự tính nhé. mình chỉ gợi ý thôi
thịnh đoàn ngọc à, mình nghĩ tính như vậy lâu lắm, nên mới lên đây cho nhanh, dù sao cũng cảm ơn bạn
Tham khảo:
A=1.2+2.3+3.4+...+2013.2014
3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 2013.2014.3
Mà: 1.2.3 = 1.2.3
2.3.3 = 2.3.4 - 2.3.1
3.4.3 = 3.4.5 - 3.4.2
2012.2013.3 = 2012.2013.2014 - 2012.2013.2011
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012
=> 3S = 2013.2014.2015
=> A = 2013.2014.2015 / 3 = 2723058910
\(S=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+......+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1}-\frac{1}{2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{2015}{2016}\)
\(\Rightarrow S=\frac{2015}{672}\)
Vậy: \(\Rightarrow S=\frac{2015}{672}\)
Bạn giải giúp mk câu mk đăng tầm 5 phút nha!
3A=1.2.3+2.3.3+3.4.3+4.5.3+.....+9.10.3
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+.....+9.10.(11-8)
3A=1.2.3-1.2.0+2.3.4-1.2.3+.....+9.10.11-9.10.8
3A=9.10.11
A=(9.10.11):3
A=330
CHẮC CHẮN 100% LÀ ĐÚNG
\(\text{Ta có: A = 1.2+2.3+3.4+4.5+...+99.100 }\)
=> 3A = 3.(1.2+2.3+3.4+4.5+...+99.100)
=> 3A = 1.2.(3 - 0) +2.3.(4 - 1) + 3.4.(5-2) + ........ + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .......... + 99.100.101
=> 3A = 99.100.101
\(\Rightarrow A=\frac{99.100.101}{3}=333300\)
k mình nếu đúng OK
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)
3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = 333300