cho các số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)với b > 0 , d > 0
Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/106812735697.html
không hiện link thì mình gửi qua tin nhắn nhé
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Thấy bài này chưa ai lm đúng nên cho e ké ạ:((
Đặt \(a-b=c;b-c=y;c-a=z\) khi đó \(x+y+z=0\)
Ta có:\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}\)
\(\Rightarrow A^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}\)
\(\Rightarrow A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow A=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ.
Đặt \(a-b=x;b-c=y\Rightarrow c-a=x-y\)
\(\Rightarrow\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}\)
\(=\sqrt{\frac{y^2\left(x+y\right)^2+x^2\left(x+y\right)^2+x^2y^2}{x^2y^2\left(x+y\right)^2}}=\sqrt{\frac{x^4+y^4+2xy^3+2x^3y+3x^2y^2}{x^2y^2\left(x+y\right)^2}}\)
\(=\sqrt{\frac{\left(x^2+y^2+xy\right)^2}{x^2y^2\left(x+y\right)^2}}=\left|\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right|\) là một số hữu tỉ (ĐPCM)
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)
\(\Leftrightarrow2abc+a^2+b^2+ab=abc^2\)
\(\Leftrightarrow\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)
\(\Leftrightarrow\left(a+b\right)^2=ab\left(c-1\right)^2\)
\(\Rightarrow ab>0\) , ab là bình phương của số hữu tỉ
\(\Rightarrow c-1=\frac{a+b}{\sqrt{ab}}\)
\(\Rightarrow c+1=\frac{a+b}{\sqrt{ab}}+2=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)^2\)
Khi đó : \(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\) là số hữu tỉ do ab là bình phương của số hữu tỉ
\(\Rightarrow\frac{c-3}{c+1}\) là bình phương của số hữu tỉ ( đpcm )
Ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(=\frac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\frac{b^2+bc+c^2}{bc\left(b+c\right)}\)
Vì a, b, c là các số hữu tỷ nên \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là số hữu tỷ
Ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)
\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\frac{c+b-a}{abc}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(vì a = b + c)
Suy ra:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)
Do a, b, c là các số hữu tỉ khác 0 nên \(\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)là một số hữu tỉ.
(Chúc bạn làm bài tốt và nhớ click cho mình với nhá!)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) có \(a=b+c\Rightarrow A=\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2}{\left(b+c\right)^2b^2c^2}\)
Ta có \(b^2c^2+c^2\left(b+c\right)^2+b^2\left(b+c\right)^2=b^2c^2+\left(b+c\right)^2\left(b^2+c^2\right)\)
=\(b^2c^2+\left(b^2+c^2+2bc\right)\left(b^2+c^2\right)=b^2c^2+\left(b^2+c^2\right)^2+2bc\left(b^2+c^2\right)\)
=\(\left(bc+\left(b^2+c^2\right)\right)^2\)
Vậy \(A=\frac{\left(bc+\left(b^2+c^2\right)\right)^2}{\left(b+c\right)^2b^2c^2}\Rightarrow\sqrt{A}=\frac{bc+b^2+c^2}{\left|\left(b+c\right)bc\right|}\)
Do \(b,c\)là các số chính phương nên \(\sqrt{A}\)chính phương suy ra điều phải chứng minh.
Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\) ( 1 )
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)
\(\Rightarrow ad+cd< bc+cd\) ( 2 )
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)