K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Lời giải:

ĐKXĐ:.............

PT $\Leftrightarrow \sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}$

$\Rightarrow 5x^2+14x+9=x^2+24x+5+10\sqrt{(x^2-x-20)(x+1)}$

$\Leftrightarrow 4x^2-10x+4=10\sqrt{(x^2-x-20)(x+1)}$
$\Leftrightarrow 2x^2-5x+2=5\sqrt{(x+4)(x-5)(x+1)}$

$\Leftrightarrow 2(x^2-4x-5)+3(x+4)=5\sqrt{(x+4)(x^2-4x-5)}$

Đặt $\sqrt{x^2-4x-5}=a; \sqrt{x+4}=b$ với $a,b\geq 0$

Khi đó: $2a^2+3b^2=5ab$

$\Leftrightarrow (a-b)(2a-3b)=0$

$\Rightarrow a=b$ hoặc $a=1,5b$

Đến đây thì đơn giản rồi.

Đáp số: $x=8$ hoặc $x=\frac{5+\sqrt{61}}{2}$

4 tháng 12 2021

\(a,ĐK:x\ge-7\\ PT\Leftrightarrow\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)

Đạt \(\sqrt{x+7}=a\ge0\)

\(PT\Leftrightarrow\sqrt{\left(a+1\right)^2}+\sqrt{a^2-a-6}=4\\ \Leftrightarrow a+1+\sqrt{a^2-a-6}=4\\ \Leftrightarrow\sqrt{a^2-a-6}=3-a\\ \Leftrightarrow a^2-a-6=a^2-6a+9\\ \Leftrightarrow5a=15\Leftrightarrow a=3\\ \Leftrightarrow\sqrt{x+7}=3\\ \Leftrightarrow x+7=9\\ \Leftrightarrow x=2\left(tm\right)\)

NV
22 tháng 3 2021

a. ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x}=a>0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+b=\sqrt{3a^2-b^2}\)

\(\Leftrightarrow\left(a+b\right)^2=3a^2-b^2\)

\(\Leftrightarrow a^2-ab-b^2=0\Leftrightarrow\left(a-\dfrac{1+\sqrt{5}}{2}b\right)\left(a+\dfrac{\sqrt{5}-1}{2}b\right)=0\)

\(\Leftrightarrow a=\dfrac{1+\sqrt{5}}{2}b\Leftrightarrow\sqrt{x^2+2x}=\dfrac{1+\sqrt{5}}{2}\sqrt{2x-1}\)

\(\Leftrightarrow x^2+2x=\dfrac{3+\sqrt{5}}{2}\left(2x-1\right)\)

\(\Leftrightarrow x^2-\left(\sqrt{5}+1\right)x+\dfrac{3+\sqrt{5}}{2}=0\)

\(\Leftrightarrow\left(x-\dfrac{\sqrt{5}+1}{2}\right)^2=0\)

\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)

NV
22 tháng 3 2021

b. ĐKXĐ: \(x\ge5\)

\(\Leftrightarrow\sqrt{5x^2+14x+9}=\sqrt{x^2-x-20}+5\sqrt{x+1}\)

\(\Leftrightarrow5x^2+14x+9=x^2-x-20+25\left(x+1\right)+10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-4x-5}=a\ge0\\\sqrt{x+4}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2+3b^2=5ab\)

\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4x-5}=\sqrt{x+4}\\2\sqrt{x^2-4x-5}=3\sqrt{x+4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x+4\\4\left(x^2-4x-5\right)=9\left(x+4\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

11 tháng 2 2020

ĐK: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-x-20}\)

Bình phương 2 vế, ta đc:

\(5x^2+14x+9=25x+5+x^2-x-20+10\sqrt{\left(x+1\right)\left(x^2-x-20\right)}\)

\(\Leftrightarrow5x^2+14x+9-25x-5-x^2+x+20=10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

\(\Leftrightarrow4x^2-10x+4=10\sqrt{\left(x+1\right)\left(x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

\(\Leftrightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right);\sqrt{x+4}=b\left(b\ge3\right)\)

Khi đó,pt trở thành \(2a^2+3b^2=5ab\Leftrightarrow2a^2-2ab+3b^2-3ab=0\)

\(\Leftrightarrow2a\left(a-b\right)+3b\left(b-a\right)=0\Leftrightarrow\left(2a-3b\right)\left(a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)

Với a=b \(\Rightarrow\sqrt{x^2-4x-5}=\sqrt{x+4}\Leftrightarrow x^2-5x-9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\left(tmdk\right)\\x=\frac{5-\sqrt{61}}{2}\left(loai\right)\end{matrix}\right.\)

Với 2a=3b \(\Rightarrow2\sqrt{x^2-4x-5}=3\sqrt{x+4}\Leftrightarrow4\left(x^2-4x-5\right)=9\left(x+4\right)\)

\(\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\left(tmdk\right)\\x=\frac{-7}{4}\left(loai\right)\end{matrix}\right.\)

Vậy ...

11 tháng 2 2020

đánh nhầm r, dòng 4 vs 5 bạn sửa 25x+5 thành 25x+25 nha, dòng 5 cx -5 thành -25

AH
Akai Haruma
Giáo viên
10 tháng 11 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Mai Huy Long - Toán lớp 10 | Học trực tuyến

24 tháng 3 2020

ĐK: $x \ geqslant 5$

\(Pt\Leftrightarrow2x^2-5x+2=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)

Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x+5\right)\)

\(\Rightarrow2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\left(\circledast\right)\)

Đặt \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\), \(\left(\circledast\right)\) trở thành: \(2u + 3v = 5\sqrt {uv} \Leftrightarrow \left[ \begin{array}{l} u = v\\ u = \dfrac{9}{4}v \end{array} \right.\)

\(\odot u=v\Rightarrow x^2-4x-5=x+4\Leftrightarrow x^2-5x-9=0\)\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{5 + \sqrt {61} }}{2} \text{(nhận)}\\ x = \dfrac{{5 - \sqrt {61} }}{2} \text{(loại)} \end{array} \right.\)

\(\odot\)\(u=\dfrac{9}{4}v\)\( \Rightarrow {x^2} - 4x - 5 = \dfrac{9}{4}\left( {x + 4} \right) \Leftrightarrow 4{x^2} - 25x - 56 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 8 \text{(nhận)}\\ x=\dfrac{{ - 7}}{4} \text{(loại)} \end{array} \right.\)

1 tháng 11 2019

ĐK: \(x\ge5\)

Chuyển vế, bình phương ta đc:

\(\sqrt{5x^2+14x+9}=5\sqrt{\left(x^2-x-20\right)\left(x+1\right)}\)

Nhận xét:

Không tồn tại số \(\alpha,\beta\) để: \(2x^2-5x+2=\alpha\left(x^2-x-20\right)+\beta\left(x+1\right)\)

Ta có: \(\left(x^2-x-20\right)\left(x+1\right)=\left(x+4\right)\left(x-5\right)\left(x+1\right)=\left(x+4\right)\left(x^2-4x-5\right)\)

PT đc vt lại là: \(2\left(x^2-4x-5\right)+3\left(x+4\right)=5\sqrt{\left(x^2-4x-5\right)\left(x+4\right)}\)

Đặt: \(\left\{{}\begin{matrix}u=x^2-4x-5\\v=x+4\end{matrix}\right.\)

Khi đó PT trở thành:

\(2u+3v=5\sqrt{uv}\Leftrightarrow\left[{}\begin{matrix}u=v\\u=\frac{9}{4}v\end{matrix}\right.\)

Xét \(u=v\) ta có PT:

\(x^2-4x-5=x+4\Leftrightarrow x^2-5x+9=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{61}}{2}\\x=\frac{5-\sqrt{61}}{2}\left(loại\right)\end{matrix}\right.\)

Xét \(u=\frac{9}{4}v\) ta có PT:

\(x^2-4x-5=\frac{9}{4}\left(x+4\right)\Leftrightarrow4x^2-25x-56=0\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{7}{4}\left(loại\right)\end{matrix}\right.\)

Vậy PT có 2 nghiệm là \(x=8;x=\frac{5+\sqrt{61}}{2}\)

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

30 tháng 7 2021

Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu