Cho hình thang ABCD ( AB//CD ). Hai đường phân giác của góc A và B cắt nhau tại K thuộc cạnh đáy CD chứng minh rằng AD+BC=CD
Các bạn giúp mk nha! Cảm ơn nhiều...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(AB//CD\left(h.thang.ABCD\right)\) nên \(\widehat{A_2}=\widehat{K_1};\widehat{B_2}=\widehat{K_2}\)
Mà \(\widehat{A_1}=\widehat{A_2};\widehat{B_1}=\widehat{B_2}\left(t/c.tia.phân.giác\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{K_1};\widehat{B_1}=\widehat{K_2}\\ \Rightarrow\Delta ADK,\Delta BKC.lần.lượt.cân.tại.D,C\\ \Rightarrow AD=DK;BC=KC\\ \Rightarrow AD+BC=KC+KD=CD\)
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
nếu hình hơi bé bạn vào link này : https://hoc24.vn/images/discuss/1632366020_614bedc45d934.jpg
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath. Em tham khảo link này nhé!
Ta có Ab song song với Dc=> BAK=AKD
mà BAK=DAK( do Ak là tpg của DAB)
=> DAk=AKD=> tam giác DAk cân tại D=>DA=Dk(1)
chứng minh tương tự với tam giác BKC => tam giác BkC cân tại BKC cân tại C=> BC=KC(2)
Cộng (1),(2) => DA+BC=DK+KC
=> Da+Bc=DC
Lời nói chẳng mất tiền mua. Lựa lời mà chửi cho vừa lòng nhau. Đã chửi, phải chửi thật đau. Chửi mà hiền quá còn lâu nó chừa. Chửi đúng , không được chửi bừa . Chửi cha mẹ nó , không thừa một ai . Khi chửi , chửi lớn mới oai. Chửi hay là phải chửi dài , chửi lâu . Chửi đi chửi lại mới ngầu. Chửi nhiều cho nó nhức đầu , đau tai. Chửi xong nhớ nói bái bai . Phóng nhanh kẻo bị ăn chai vào mồm.
(Bạn tự vẽ hình giùm)
Ta có \(\widehat{KAB}=\widehat{AKD}\)(AB // CD; so le trong)
Mà \(\widehat{KAB}=\widehat{DAK}\)(AK là tia phân giác của \(\widehat{A}\))
=> \(\widehat{AKD}=\widehat{DAK}\)
=> \(\Delta ADK\)cân tại D
nên AD = DK (1)
Chứng minh tương tự, ta cũng có: \(\Delta BKC\)cân tại C
nên BC = KC (2)
Lấy (1) cộng (2)
=> AD + BC = DK + KC
Mà \(K\in CD\)(gt)
=> D, K, C thẳng hàng
=> AD + BC = DC (đpcm)