Giá trị của biểu thức có phụ thuộc vào biến x không ?
P = 8x3 - 5 - (2x + 1) (4x2- 2x + 1)
Giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
(3x-5)(2x+11)-(2x+3)(3x+7)
=6x2+23x-55-6x2-23x-21
=(6x2-6x2)+(23x-23x)-55-21
=0+0-76
=-76.
Vậy gt biểu thức ko phụ thuộc vào biến x
(8x3 – 4x2) : (2x2) – (4x2 – 3x ) : x + 2x
= 4x – 2 – (4x – 3) + 2x = 4x – 2 – 4x + 3 + 2x = 2x + 1
Thay x = -1, ta được: 2.(-1) + 1 = -1
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
Bài 1 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18-2\right)\)
\(=6x^2+19x-7-6x^2-x+5-16=18x-18\)
Vậy biểu thức phụ thuộc biến x
b, \(\left(x-2\right)\left(x+1\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=\left(x^2-x-2\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=2x^3+x^2-2x^2-1-4x-2-2x^3+2x+5x+1=-x^2-2+3x\)
Vậy biểu thức phụ thuộc biến x
`@` `\text {Ans}`
`\downarrow`
\((6x-5)(x+8)-(3x-1)(2x+3)-9(4x-3)\)
`= 6x(x+8) - 5(x+8) - [ 3x(2x+3) - 2x - 3] - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 9x - 2x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 7x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - 6x^2 - 7x + 3 - 36x + 27`
`= (6x^2 - 6x^2) + (48x - 5x - 7x - 36x) + (-40 + 3 + 27)`
`= 0 + 0 - 10`
`= - 10`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến
\(P=8x^3-5-\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3-5-\left(8x^3+1\right)=8x^3-5-8x^3-1=-6\)
Vậy giá trị biểu thức P không phụ thuộc vào biến
Ta có: P = \(8x^3-5-\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3-5-\left(8x^3+1\right)=-6\)
Vậy, biểu thức P không thuộc x