Cho tam giác ABC có 3 góc nhọn và AH là đường cao
a) Chứng minh \(^{AB^2+CH^2=AC^2+BH^2}\)
b) Vẽ trung tuyến AM của tam giác ABC, chứng minh :
i) \(AB^2+AC^2=\frac{BC^2}{2}+2AM^2\)
ii) \(AC^2-AB^2=2BC.HM\) với\(AC>AB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB^2-BH^2=AH^2\)
\(AC^2-CH^2=AH^2\)
Do đó: \(AB^2-BH^2=AC^2-CH^2\)
=>\(AB^2+CH^2=AC^2+BH^2\)
b: \(AC^2-AB^2=AH^2+HC^2-AH^2-HB^2\)
\(=HC^2-HB^2=2\cdot BC\cdot HM\)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM