Tính giá trị biểu thức \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{5}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2015}}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
24 tháng 9 2016
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
15 tháng 10 2016
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
3 tháng 2 2016
nk tuấn ơi cậu có thấy vô lí chỗ đầu thì mẫu toàn số lẻ lúc sau là số chẵn ko
Dat bieu thuc tren la A
ta co \(\frac{1}{\sqrt{n+2}+\sqrt{n}}=\frac{\sqrt{n+2}-\sqrt{n}}{2}\)
ap dung dang thuc tren ta co\(\frac{1}{\sqrt{3}+1}=\frac{\sqrt{3}-1}{2}\)
tuong tu ta co \(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{5}-\sqrt{3}}{2}\)
.........
\(\frac{1}{\sqrt{2017}+\sqrt{2015}}=\frac{\sqrt{2017}-\sqrt{2015}}{2}\)
ta co
\(A=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+.....+\sqrt{2017}-\sqrt{2015}\right)=\frac{\sqrt{2017}-1}{2}\)