K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

a, \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)

\(\Leftrightarrow\left[\left(x-4\right)\left(x-7\right)\right]\left[\left(x-5\right)\left(x-6\right)\right]=1680\)

\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)

Gọi \(k=x^2-11x+29\)

\(\Rightarrow\left(k-1\right)\left(k+1\right)=1680\)

\(\Rightarrow k^2-1=1680\Rightarrow k^2=1681\)

\(\Rightarrow k=\sqrt{1681}=\pm41\)

* TH1: k = -41

\(\Leftrightarrow x^2-11x+29=-41\)

\(\Leftrightarrow x^2-11x+70=0\)

\(\Leftrightarrow x^2-2.\dfrac{11}{2}x+\dfrac{121}{4}-\dfrac{121}{4}+70=0\)

\(\Leftrightarrow\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}=0\Leftrightarrow\left(x-\dfrac{11}{2}\right)^2=\dfrac{-159}{4}\left(vôli\right)\)

\(\left(x-\dfrac{11}{2}\right)^2\ge0\forall x\)\(\dfrac{-159}{4}< 0\Rightarrow\left(x-\dfrac{11}{2}\right)^2=\dfrac{-159}{4}\left(loại\right)\)

* TH2: k = 41

\(\Leftrightarrow x^2-11x+29=41\)

\(\Leftrightarrow x^2-11x-12=0\)

\(\Leftrightarrow x^2+x-12x-12=0\)

\(\Leftrightarrow x\left(x+1\right)-12\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-12\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)

\(\Rightarrow\left\{x_1=-1;x_2=12\right\}\)

1 tháng 9 2018

b, \(\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x-5\right)\right]\left[\left(x+3\right)\left(x-6\right)\right]=180\)

\(\Leftrightarrow\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\)

Đặt \(k=x^2-3x-14\)

Ta có pt: \(\left(k-4\right)\left(k+4\right)=180\)

\(\Leftrightarrow k^2-16=180\Leftrightarrow k^2=196\)

\(\Leftrightarrow k=\sqrt{196}=\pm14\)

* TH1: \(t=14\Leftrightarrow x^2-3x-14=14\)

\(\Leftrightarrow x^2-3x-28=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=7\end{matrix}\right.\)

* TH2: \(t=-14\Leftrightarrow x^2-3x-14=-14\)

\(\Leftrightarrow x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

\(\Rightarrow\left\{x_1=-4;x_2=7;x_3=0;x_4=3\right\}\)

10 tháng 3 2019

x+ 2x2 + 2x +1 = 0

(=) x3 + x2 +x2 + x + x + 1 = 0

(=) x2.(x+1) + x.(x+1) + (x+1) = 0

(=) (x2 + x +1 ).(x+1) = 0

(=) \(\orbr{\begin{cases}x+1=0\\x^2+x+1=0\left(lo\text{ại}\right)\end{cases}}\)(=) x=-1

Vậy phương trình có nghiệm là x=-1

10 tháng 3 2019

a/ Đặt (x^2 - 5x) = a thì ta có

a^2 + 10a + 24 = 0

<=> (a + 4)(a + 6) = 0

Làm nốt

10 tháng 3 2019

b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680

<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680

<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680

Đặt x^2 - 11x + 28 = a thì ta có

a(a + 2) = 1680

<=> (a - 40)(a + 42) = 0

Làm nốt

NV
12 tháng 3 2019

a/ \(x^3+1+2x^2+2x=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^2+x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

b/ \(\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)-1680=0\)

\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)-1680=0\)

Đặt \(x^2-11x+28=a\Rightarrow x^2-11x+30=a+2\)

Pt trở thành:

\(a\left(a+2\right)-1680=0\Leftrightarrow a^2-2a-1680=0\) \(\Rightarrow\left[{}\begin{matrix}a=42\\a=-40\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-11x+28=42\\x^2-11x+28=-40\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-11x-14=0\\x^2-11x+68=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{11+\sqrt{177}}{2}\\x=\frac{11-\sqrt{177}}{2}\end{matrix}\right.\)

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

28 tháng 8 2021

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

a: =>x+3=x-2 hoặc x+3=2-x

=>2x=-1

=>x=-1/2

b: =>3x+7=x-2 hoặc 3x+7=-x+2

=>2x=-9 hoặc 4x=-5

=>x=-5/4 hoặc x=-9/2

c: =>|3x-4|=|2x-5|

=>3x-4=2x-5 hoặc 3x-4=-2x+5

=>x=-1 hoặc x=9/5