K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(x^2-6x+10\)

\(=x^2-2.x.3+9+1\)

\(=\left(x-3\right)^2+1>0\)

\(4x^2-20x+27\)

\(=\left(2x\right)^2-2.2x.5+25+2\)

\(=\left(2x-5\right)^2+2>0\)

\(x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

học tốt

31 tháng 8 2018

a) A=x2 _ 6x + 10

<=> A=x2-6x+9+1

<=> A=(x-3)2+1 luôn dương với mọi x

b) B=4x2 _ 20x + 27

<=> 4x2-20x +25+2

<=> (2x-5)2+2 luôn dương với mọi x

c) C=x2 + x +1

<=> x2+2.x 1/2  + 1/4 +3/4

<=> (x+1/2)2+3/4 luôn dương với mọi x 

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương

21 tháng 9 2022

Không biê

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

7 tháng 10 2021

Cảm ơn ạyeu

 

7 tháng 5 2017

\(2013^{2013}=\left(2013^{2012}\right).2013=\left(...1\right).2013=\left(...3\right)\)
\(2017^{2017}=\left(2017^{2016}\right).2017=\left(...1\right).2017=\left(...7\right)\)
\(\Rightarrow2013^{2013}+2017^{2017}=\left(...3\right)+\left(...7\right)=\left(...0\right)⋮10\)

16 tháng 9 2021

a.x^3-1^3

b.x^3-5^3

c)(2x)^3+3^3

d)x^3+1/2^3

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)