Các số hữu tỷ a va b phải thỏa mãn điều kiên j gì để có tỷ lệ thức
a/b=(a+c)/(b+c)(c # 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) (do a+b+c = 0)
=> \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
=> đpcm
\(\hept{\begin{cases}a-2b\inℚ\\3a+4b\inℚ\end{cases}}\Rightarrow2\left(a-2b\right)+\left(3a+4b\right)=5a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.
ta có :
\(a=\frac{2\left(a+3b\right)+3\left(3a-2b\right)}{11}\) nên a là số hữu tỉ
\(b=\frac{-3\left(a+3b\right)+\left(3a-2b\right)}{-11}\) nên b là số hữu tỉ
\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.