tim mim A=\(\dfrac{xy}{z}+\dfrac{yz}{x}\)+\(\dfrac{xz}{y}\)voi x,y,z >0 va x^2+y^2+z^2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z\ne0\)
-Ta c/m: -Với \(a+b+c=0\) thì: \(a^3+b^3+c^3-3abc=0\)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(đpcm\right)\)
-Quay lại bài toán:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
\(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3-3x^2y^2z^2+3x^2y^2z^2}{x^2y^2z^2}=\dfrac{\left(xy+yz+zx\right)\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=\dfrac{0.\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=3\)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(VT\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}\)
\(VT\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\le\dfrac{1}{2}\sqrt{3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)}=\dfrac{\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)
Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)
\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)
\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị
Lời giải:
Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)
Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)
-------
Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)
\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)
\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)
\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)
Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)
Suy ra:
\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)
\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Do \(xyz\ne0\) ta có:
\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)
Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)
Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
bình phương cả 2 vế ta được
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2x^2+2y^2+2z^2\)
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\) (vì x^2 +y^2 +z^2 =1)
Áp dụng BĐT cô si cho 2 số
\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\left(1\right)\)
\(\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\left(2\right)\)
\(\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\left(3\right)\)
(1)+(2)+(3)
=> \(2\left(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\right)\ge2\left(x^2+y^2+z^2\right)\)
<=> \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge1\)
Cộng 2 vào cả 2 vế ta đc
\(A^2\ge3\)
<=> \(\ge\sqrt{3}\)
Vậy Min A= \(\sqrt{3}\) khi x=y=z =\(\dfrac{1}{\sqrt{3}}\)
Lời giải khác:
Đặt \((\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y})\mapsto (a,b,c)\)
\(\Rightarrow (x^2,y^2,z^2)=(ac,ab,bc)\)
Bài toán trở thành tìm min của $A=a+b+c$ biết $ab+bc+ac=1$ và $a,b,c>0$
Theo hệ quả quen thuộc của BĐT AM-GM:
\(A^2=(a+b+c)^2\geq 3(ab+bc+ac)=3\)
\(\Rightarrow A\geq \sqrt{3}\)
Vậy \(A_{\min}=\sqrt{3}\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)