Cho A=201/202+202/203+203/204 và B= 201+202+203/202+203+204
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)+ \(\frac{202}{202+203+204}\)+ \(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204 nên \(\frac{201}{202}\)>\(\frac{201}{202+203+204}\)(1)
Vì 203 < 202 + 203 + 204 nên \(\frac{202}{203}\)> \(\frac{202}{202+203+204}\)(2)
Vì 204 < 202 + 203 + 204 nên \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)(3)
Cộng vế vơi vế của (1) , (2) và (3)
=>\(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B
vì 204 chia hết 4 ta ghép 4 số liên tiếp lại một cặp sau đó được bao nhiêu mổi cặp rồi nhân lên
199 - 200 + 201 - 202 + 203 - 204 + 205 - 206 + 207
= ( 199 - 200 ) + ( 201 - 202 ) + ( 203 - 204 ) + ( 205 - 206 ) + 207
= ( -1 ) + ( -1 ) + ( -1 ) + ( -1 ) + 207
= -4 + 207
= 203
199 - 200 + 201 - 202 + 203 - 204 + 205 - 206 + 207 = 203
\(S=1\cdot2+2\cdot3+3\cdot4+...+39\cdot40\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+39\cdot40\cdot\left(41-38\right)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+39\cdot40\cdot41-38\cdot39\cdot40\)
\(3S=39\cdot40\cdot41\)\(\Rightarrow S=\dfrac{39\cdot40\cdot41}{3}=21320\)
Ta có : \(S=1.2+2.3+3.4+...+38.39+39.40\)
\(3S=1.2.3+2.3.3+3.4.3+...+38.39.3+39.40.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+39.40.\left(41-38\right)\) \(3S=39.40.41\)
\(S=\dfrac{39.40.41}{3}\)\(=21320\)
S = 1 x 2 + 2 x 3 + 3 x 4 + ... + 38 x 39 + 39 x 40
3S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 38 x 39 x 3 + 39 x 40 x 3
3S = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + ... + 38 x 39 x ( 40 - 37 ) + 39 x 40 x ( 41 - 38 )
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 38 x 39 x 40 - 37 x 38 x 39 + 39 x 40 x 41 - 38 x 39 x 40
S = 39 x 40 x 41 : 3
S = 21320
S=1x2+2x3+3x4+...+38x39+39x40
3S=(1x2+2x3+3x4+...+38x39+39x40)x3
3S=1x2x3+2x3x3+3x4x3+....+39x40x3
3S=1x2x3+2x3x(4-1)+3x4x(5-2)+...+39x40x(41-38)
3S=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+...+39x40x41-38x39x40
3S=39x40x41
3S=63960
S=63960:3
S=21320
S = 1.2 + 2.3 + 3.4 + ... + 38.39 + 39.40
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 38.39.(40-37) + 39.40.(41-38)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 38.39.40 - 37.38.39 + 39.40.41 - 38.39.40
3S = 39.40.41
S = 13.40.41
S = 21320
S = 1 x 2 + 2 x 3 + 3 x 4 + ... + 38 x 39 + 39 x 40
3S = 1 x 2 x ( 3 - 0 ) + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + ... + 38 x 39 x ( 40 - 37 ) + 39 x 40 x ( 41 - 38 )
3S = 1 x 2 x 3 - 0 x 1 x 2 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + ... + 38 x 39 x 40 - 37 x 38 x 39 + 39 x 40 x 41 - 38 x 39 x 40
S = \(\frac{39x40x41}{3}\)
S = 21320
\(S=1x2+2x3+3x4+...+39x40\)
\(\Rightarrow3S=1x2\left(3-0\right)2x3\left(4-1\right)+...+39x40\left(41-38\right)\)
\(\Rightarrow3S=1x2x3-0x1x2+2x3x4-1x2x3+...+39x40x41-38x39x40\)
\(\Rightarrow S=\frac{38x39x40}{3}\)
\(\Rightarrow S=21320\)
\(S=1.2+2.3+3.4+...+38.39+39.40\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+38.39.\left(40-37\right)+39.40.\left(41-38\right)\)
\(3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+38.39.40-37.38.39+39.40.41-38.39.40\)
\(3S=39.40.41\)
\(S=\frac{63960}{3}=21320\)
. là nhân
Xét B = \(\frac{201+202+203}{202+203+204}\)
= \(\frac{201}{202+203+204}\)\(+\)\(\frac{202}{202+203+204}\)\(+\)\(\frac{203}{202+203+204}\)
Vì 202 < 202 + 203 + 204
=> \(\frac{201}{202}\)> \(\frac{201}{202+203+204}\)( 1 )
Vì 203 < 202 + 203 + 204
=> \(\frac{202}{203}\)>\(\frac{202}{202+203+204}\)( 2 )
Vì 204 < 202 + 203 + 204
=> \(\frac{203}{204}\)> \(\frac{203}{202+203+204}\)( 3 )
Cộng vế với vế của ( 1 ), ( 2 ) và ( 3 )
=> \(\frac{201}{202}+\frac{202}{203}+\frac{203}{204}\)> \(\frac{201+202+203}{202+203+204}\)
=> A > B
Vậy A > B