K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

A thuộc Z

<=>  3 chia hết cho n - 2

<=> n - 2 thuộc Ư(3) = {-3; -1; 1; 3}

<=> n thuộc {-1; 1; 3; 5}

B thuộc Z

<=> n chia hết cho n - 1

<=> n - 1 + 1 chia hết cho n - 1

<=>  1 chia hết cho n - 1

<=> n - 1 thuộc Ư(1) = {-1;1}

<=> n thuộc {0; 2}.

16 tháng 2 2016

Bạn nào làm nhanh và đúng nhất mình sẽ đúng cho!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
12 tháng 7 2017

\(a>b\)

\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+n}{b+n}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)

\(a< b\)

\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)

\(a=b\)

\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+n}{b+n}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)

29 tháng 12 2019

mọi người nhanh nhé đang cần gấp

5 tháng 9 2015

a) a > b mà b \(\in\) N* nên a \(\in\) N*

 \(a>b\Rightarrow an>bn\) (vì a,b,n \(\in\) N*)

\(\Rightarrow ab+an>ab+bn\) hay \(a.\left(b+n\right)>b.\left(a+n\right)\)

Do đó \(\frac{a}{b}>\frac{a+n}{b+n}\). Đề sai. 

17 tháng 5 2017

fhfgjjgjgf

11 tháng 7 2015

(+) Th1 : a = b 

=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

(+) th2 : a < b 

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}

26 tháng 7 2020

Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n) 

                                      <=> a.b+a.n<b.a+b.n

                                      <=> a.n<b.n

                                      <=> a<b                                                =>a/b<a+n/b+n <=> a<b

    Tương tự: a/b>a+n/b+n <=> a>b

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời