Phân tích : x10 +x5 +1 thành nhân tử và giải thích vì sao?
Giúp mk vs
Gấp lắm
AI nhanh mk tick cho nhá!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề x^7 chuyển thành x^8
Ta có
\(x^8+x+1=x^8-x^2+x^2+x+1\)
\(=x^2[\left(x^3\right)^2-1]+x^2+x+1\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+1\right)\)
câu này gửi rồi mà tôi lm rồi đó Câu hỏi của nguyen thi diem quynh - Toán lớp 8 - Học toán với OnlineMath
a. 1+6x-6x2-x3
=(1-x3)+(6x-6x2)
=(1-x)(1+x+x2)+6x(1-x)
=(1-x)(1+x+x2+6x)
=(1-x)(1+7x+x2)
b. x3-2x-4
=x3-4x+2x-4
=x(x2-4)+2(x-2)
=x(x-2)(x+2)+2(x-2)
=(x2+2x+2)(x-2)
Ủng hộ mk nhak ^_-
a) \(x^3-16x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b) \(3x^2+3y^2-6xy-12=3\left(x^2-2xy+y^2-4\right)=3\left(x-y-2\right)\left(x-y+2\right)\)
c) \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
d) \(x^4+x^3+2x^2+x+1=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
a) 109+2 =10....02 \(⋮\)3
Vì 1+0+0+....+2=3
b) 5.7.9.11 chia hết cho 3 (vì 9 chia hết cho 3)
104.105.106 chia hết cho 3 (vì 105 chia hết cho 3)
=> 5.7.9.11+104.105.106 là hợp số
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(x^{10}+x^5+1\)
\(=x^{10}+x^5+x^2-x^2+x-x+1\)
\(=\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^3-1\right]+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)+1\right]\)
=.= hok tốt!!
Không phân tích được bạn ơi