K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có:
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra

mk ko bt có đúng ko đâu

25 tháng 8 2018

Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2. 
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS) 
<=> a^2 - 100*b^2 = D 
<=> (a-10b)(a+10b) = D 
Ta có vài nhận xét sau: 
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^) 
2)a-10b>0 
3) a+10b <100 
Suy ra 
b chỉ có thể bằng 1,2,3,4 
( nếu b=5 thì đồng thời a>50 và a<50 
b=6 thì đồng thời a>60 và a<40.... 
làm gì có ) 
TH1: b=4 
=> a có dạng 16xx && 40<a<60 
=> 1600<a^2<3600 
=> chỉ có số 1681=41^2 thỏa mãn 

TH2: b=3 
=> a có dạng 9xx && 30<a<70 
=> 900<a^2<4900 
=>chỉ có 31^2 = 961 thỏa mãn 

TH3: b=2 
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS 
Nên: Số lớn nhất cần tìm là 1681

2 tháng 8 2020

Gọi số chính phương cần tìm là n2n2

Có:

:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)

Theo bài ra ta có 100A là số chính phương

⇒A⇒A là số chính phương

Đặt A=x2A=x2

Có: n2>100x2n2>100x2

⇒n>10x⇒n>10x

⇒n≥10x+1⇒n≥10x+1

⇒n2≥(10x+1)2⇒n2≥(10x+1)2

⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1

⇒b≥20x+1⇒b≥20x+1

Mà b≤99b≤99

⇒20x+1≤99⇒20x+1≤99

⇒x≤4⇒x≤4

Ta có :

n2=100x2+b≤1600+99n2=100x2+b≤1600+99

⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699

Chỉ có 412=1681(tm)412=1681(tm)

Vậy số chính phương lớn nhất phải tìm là 412=1681

8 tháng 9 2017

Có phải thế này ko bn
Tìm Max A ( a#0, b#0, a,b là c/s)
sao cho A và A đều là số cp
Coi vẻ khó nhỉ

8 tháng 9 2017

Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có: 
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra

T.I.C.K cho mình nha please :)

31 tháng 3 2017

Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2.( Minh chỉ đưa ra kết quả nếu nó là số lớn nhất nên đừng nhầm)
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS) 
<=> a^2 - 100*b^2 = D 
<=> (a-10b)(a+10b) = D 
Ta có vài nhận xét sau: 
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^) 
2)a-10b>0 
3) a+10b <100 
Suy ra 
b chỉ có thể bằng 1,2,3,4 
( nếu b=5 thì đồng thời a>50 và a<50 
b=6 thì đồng thời a>60 và a<40.... 
làm gì có ) 
TH1: b=4 
=> a có dạng 16xx && 40<a<60 
=> 1600<a^2<3600 
=> chỉ có số 1681=41^2 thỏa mãn 

TH2: b=3 
=> a có dạng 9xx && 30<a<70 
=> 900<a^2<4900 
=>chỉ có 31^2 = 961 thỏa mãn 

TH3: b=2 
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS 
Nên: Số lớn nhất cần tìm là 1681

31 tháng 3 2017

cậu có tk đâu mà bảo giải? (lần trước giải mà cậu ko tk)

2 tháng 8 2020

Gọi số chính phương cần tìm là n2n2

Có:

:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)

Theo bài ra ta có 100A là số chính phương

⇒A⇒A là số chính phương

Đặt A=x2A=x2

Có: n2>100x2n2>100x2

⇒n>10x⇒n>10x

⇒n≥10x+1⇒n≥10x+1

⇒n2≥(10x+1)2⇒n2≥(10x+1)2

⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1

⇒b≥20x+1⇒b≥20x+1

Mà b≤99b≤99

⇒20x+1≤99⇒20x+1≤99

⇒x≤4⇒x≤4

Ta có :

n2=100x2+b≤1600+99n2=100x2+b≤1600+99

⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699

Chỉ có 412=1681(tm)412=1681(tm)

Vậy số chính phương lớn nhất phải tìm là 412=1681

25 tháng 8 2018

Số đó là 961 nhé bạn.