K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

\(A=2+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(A=2^{100}-2\)

\(B=2^{101}\)   là số chẵn và B hơn A 2 đơn vị

=> A và B là 2 số tự nhiên chắn liên tiếp

24 tháng 8 2018

2A=2^2+2^3+...+2^101

2A-A=(2^2+2^3+...+2^101)-(2+2^2+...+2^100)

A=2^101-2

=>A và B là 2 STN liên tiếp => đpcm

k cho mk nha

23 tháng 8 2016

\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)

\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)

=> A và B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

Ta có: A=1+2+22+...+22009

=>2A=2+22+23+....+22010

=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)

=>A=22010-1

=>A và B là 2 số tự nhiên liên tiếp (đpcm)

13 tháng 8 2015

a.

ọi số thứ nhất là x, số thứ 2 là x + 1 

Có x . (x +1) = 111222 

<=> x² + x = 111222 

Cộng cả 2 vế với 1/4, ta có 

x² + x + 1/4 = 111222,25 

<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức) 

<=> (x + 1/2)² = 111222,25 

<=> x + 1/2 = 333,5 

<=> x = 333 

Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222

Còn lại mỏi tay quá

 

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

14 tháng 10 2017

a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2

b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3

c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 

      3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3

\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)

d) Tương tự

14 tháng 10 2017

tk mk nhá

17 tháng 10 2020

a) +) Nếu 2 số đó cùng chẵn \(\Rightarrow\)cả 2 số đó đều \(⋮2\)\(\Rightarrow\)Tổng \(⋮2\)(1)

+) Nếu 2 số đó cùng lẻ

Gọi 2 số lẻ lần lượt là \(2a+1\)và \(2b+1\)\(a,b\inℕ\))

Ta có: \(\left(2a+1\right)+\left(2b+1\right)=4b+2=2\left(2b+1\right)⋮2\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

b) Gọi 3 số tự nhiên liên tiếp là \(a\)\(a+1\)\(a+2\)\(a\inℕ\))

Ta có: \(a+\left(a+1\right)+\left(a+2\right)=3a+3=3\left(a+1\right)⋮3\)

\(\Rightarrowđpcm\)

22 tháng 9 2016

\(A=1+2+2^2+2^3+...+2^{1016}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2016}\right)\)

\(2A=2+2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)

\(A=2^{2017}-1\)

\(B=2^{2017}\)

=> A và B là hai số tự nhiên liên tiếp

\(2A=2^1+2^2+...+2^{20}\)

nên \(A=2^{20}-1\)

Vậy: A và B là hai số tự nhiên liên tiếp

8 tháng 12 2021

\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)

Mà \(B=2^{20}\) nên ta có đpcm