GIÚP DÙM MÌNH NHA MÌNH ĐANG CẦN GẤP ^^
1/Chứng minh:
a)\(\tan^2\alpha-\sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
b) \(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha=1\)
2/Cho tam giác ABC có BH là đường cao, biết AB = 40cm;AC=58cm;BC=42cm
a) Chứng minh tam giác ABC vuông
b) Tính tỉ số lượng giác của \(\widehat{A}\)
C)Vẽ HE⊥AB;HF⊥BC. Tính BH ; BE; BF và \(S_{EFCA}\)
1) a) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)
\(=tan^2\alpha.cos^2=sin^2\alpha\left(đpcm\right)\)
b) ta có : \(cos^2\alpha+tan^2\alpha.cos^2\alpha=cos^2\alpha.\left(1+tan^2\alpha\right)\)
\(=cos^2\alpha\left(1+\dfrac{sin^2\alpha}{cos^2\alpha}\right)=cos^2\alpha\left(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\left(đpcm\right)\)