K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)

b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)

c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)

 

9 tháng 8 2017

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

10 tháng 8 2017

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q

\(A=\dfrac{636363\cdot37-373737\cdot63}{1+2+3+...+2006}\)

\(=\dfrac{37^2\cdot3^3\cdot7^2\cdot13-37^2\cdot3^3\cdot7^2\cdot13}{\left(2006+1\right)\cdot1003}\)

=0

26 tháng 7 2017

1) \(1,2.\left(\dfrac{2,4.x-0,23}{x}-0,5\right)=1,44\)

\(\dfrac{2,4.x-0,23}{x}-0,5=1,44:1,2\)

\(\dfrac{2,4.x-0,23}{x}-0,5=1,2\)

\(\dfrac{2,4.x-0,23}{x}=1,2+0,5\)

\(\dfrac{2,4.x-0,23}{x}=1,7\)

\(1,4.x-0,23=1,7\)

\(1,4.x=1,7+0,23\)

\(1,4.x=1,93\)

\(x=1,93:1,4\)

\(x=\dfrac{193}{140}\)

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

21 tháng 7 2018

C=1/2.(3/60.63+....+3/117.120)+1/1003

C=1/2.(1/60-1/63+....+1/117-1/120)+1/1003

....còn lại tự làm nha, bài còn lại cũng tương tự

21 tháng 7 2018

Bạn ơi còn \(\frac{5}{2006}\)xử lý sao

21 tháng 7 2018

Ta có:

\(C=\dfrac{2}{60.63}+\dfrac{2}{63.66}+...+\dfrac{2}{117.120}+\dfrac{2}{2006}\)

\(C=2\left(\dfrac{1}{60.63}+\dfrac{1}{63.66}+...+\dfrac{1}{117.120}\right)+\dfrac{2}{2006}\)

\(C=2.\dfrac{1}{3}\left(\dfrac{3}{60.63}+\dfrac{3}{63.66}+...+\dfrac{3}{117.120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(C=\dfrac{2}{3}.\dfrac{1}{120}+\dfrac{2}{2006}\)

\(C=\dfrac{1}{180}+\dfrac{2}{2006}\)

Ta lại có:

\(D=\dfrac{5}{40.44}+\dfrac{5}{44.48}+...+\dfrac{5}{76.80}+\dfrac{5}{2006}\)

\(D=5\left(\dfrac{1}{40.44}+\dfrac{1}{44.48}+...+\dfrac{1}{76.80}\right)+\dfrac{5}{2006}\)

\(D=5.\dfrac{1}{4}\left(\dfrac{4}{40.44}+\dfrac{4}{44.48}+...+\dfrac{4}{76.80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(D=\dfrac{5}{4}.\dfrac{1}{80}+\dfrac{5}{2006}\)

\(D=\dfrac{1}{64}+\dfrac{5}{2006}\)

\(\dfrac{1}{180}< \dfrac{1}{64}\)

\(\dfrac{2}{2006}< \dfrac{5}{2006}\)

\(\Rightarrow\dfrac{1}{180}+\dfrac{2}{2006}< \dfrac{1}{64}+\dfrac{5}{2006}\)

\(\Rightarrow C< D\)

21 tháng 7 2018

dở ẹt nhu cu net ma ko biet lamb tao hoc lop mau giao tao cung biet tra loi dung la nguhehe

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

14 tháng 6 2018

Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )

B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]

B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]

B = \(\dfrac{47}{41}.5\)

B = \(\dfrac{235}{41}\)

Chúc bn hc tốt!!!hahahahahaha