K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

Q = 5+ (52+ 53 + 54) + (5+ 56 + 57) + ....+ (52015 + 52016 + 52017)

Q = 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52

Q = 5 + 52.31 + ...+ 52015.31 

Q = 5 + 31.(5+ ...+ 52015)

=> Q chia cho 31 dư 5

bài làm

Q = 5+ (52+ 53 + 54) + (5+ 56 + 57) + ....+ (52015 + 52016 + 52017)

= 5 + 52.(1 + 5 + 52) + ....+ 52015 .(1 + 5 + 52

 = 5 + 52.31 + ...+ 52015.31 

= 5 + 31.(5+ ...+ 52015)

Vậy................

hok tốt

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

21 tháng 11 2021

\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{2020}+5^{2021}\right)\\ =5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{2019}\left(5+5^2\right)\\ =5+\left(5+5^2\right)\left(5+5^3+...+5^{2019}\right)\\ =5+31\left(5+5^3+...+5^{2019}\right)\)

Vậy BT chia 31 dư 5

bài 6 :1) cho p và p + 8 đều là số nguyên tố (p>3). hỏi p + 100 là số nguyên tố hay hợp số ?2) trog một phép chia,số bị chia bằng 63,số dư bằng 8. tìm số chia và thương 3) cho A = 5 +52 + 53 +...+52016. Tìm x để 4A + 5 = 5x.4) chúng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.5) chứng tỏ rằng tổng A = 405n + 2405 + m26) Cho S = 1 + 3 + 32 + 33 + ...+ 398. Chứng minh S không phải là số chính...
Đọc tiếp

bài 6 :

1) cho p và p + 8 đều là số nguyên tố (p>3). hỏi p + 100 là số nguyên tố hay hợp số ?

2) trog một phép chia,số bị chia bằng 63,số dư bằng 8. tìm số chia và thương 

3) cho A = 5 +52 + 53 +...+52016. Tìm x để 4A + 5 = 5x.

4) chúng minh rằng tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

5) chứng tỏ rằng tổng A = 405n + 2405 + m2

6) Cho S = 1 + 3 + 3+ 3+ ...+ 398. Chứng minh S không phải là số chính phương.

7) So sánh hai hiệu : 20182019 - 20182018 và 20182018 - 20182017.

8) Khi chia một số cho 255 ta được số dư là 100. hỏi số đó chia hết cho 85 không? Vì sao? Nếu có dư thì số như là bao nhiêu?

9) Chứng minh rằng với mọi số tự nhiên n thì n2 + n +1 không chia hết cho 4.

mình chia 2 phần ạ. còn phần 2 mình sẽ viết. mong mn giúp mình ạ ^^ mình cần rất gấp vì mai mình đi học rồi. mn ko giúp mình là coi như mình toang luôn T-T

8
16 tháng 10 2021

mn ơi mình cần siêu gấp luôn T-T

16 tháng 10 2021

mnnnnn ơi T-T

30 tháng 12 2018

25 = 32 chia 31 dư 1 => 25.403 = 22015 chia 31 dư 1

=> 22015 + 13 chia 31 dư 14

26 tháng 6 2016

Gọi số đó là abcd , thì abcd tận cùng là 06 (do abcd chia 100 dư 6)

=> abcd là số chẵn

Q chia 51 dư 17 => Q chia hết cho 17

Ta có ab06 chia hết cho 17

=> ac89 + 17 = ab06 (sao cho c + 1 = b)

=> ac x 100 + 89 chia hết cho 17

=> ad x 100 + 289 chia hết cho 17 (d + 2 = c)

=> ad x 100 chia hết cho 17

=> ad chia hết cho 17

=> ad thuộc {17;34;51;68;85}

abcd lần lượt thuộc {2006;3706;5406;7106;8806}

do abcd chia 51 dư 17, mà 51 chia hết cho 3, 17 chia 3 dư 2 (=) abcd chia 3 dư 2

trong tập hợp trên, chỉ có các số 2006, 7106 thõa mãn dữ kiện trên

=> Q có thể là 2006; 7106