Cho tam giác DEF cân tại D. Phân giác góc E và góc F cắt cạnh DF và DE lần lượt ở M và N. EM cắt FN ở I a) chứng minh tam giác DEF cân tại D b)tam giác ENF=∆FME c)DI là phân giác góc I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔDEN và ΔFEN có
ED=EF
góc DEN=góc FEN
EN chung
=>ΔDEN=ΔFEN
=>ND=NF
=>ΔNDF cân tại N
b: ΔDEN=ΔNFE
=>góc NFE=90 độ
=>NF vuông góc EF
c: Xét ΔDEP có
DF là trung tuyến
DF=EP/2
=>ΔDEP vuông tại D
a) Xét ΔDEF có
EM là đường phân giác ứng với cạnh DF(gt)
nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)
mà DM+MF=DF(M nằm giữa D và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)
Do đó:
\(\dfrac{DM}{5}=\dfrac{5}{11}\)
hay \(DM=\dfrac{25}{11}cm\)
Vậy: \(DM=\dfrac{25}{11}cm\)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.