-Hoạt động 1: Cho 3 số nguyên dương a, b, c. Hỏi a, b, c có thỏa mãn điều kiện là độ dài 3 cạnh của một tam giác không?
-Hoạt động 2: cho 2 số nguyên a và b. Tìm số lớn hơn Học sinh tự làm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\left(3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)< 10\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}< 7\)
\(\Leftrightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}< 7\)
Không giảm tổng quá .Giả sử a là cạnh lớn nhất .Giả b + c < a => 0 < \(\frac{b+c}{a}\)
\(\Rightarrow\frac{a+c}{b}+\frac{b+a}{c}+\frac{c+b}{a}>\frac{2c+b}{b}+\frac{2b+c}{c}+\frac{b+c}{a}\)( không chắc lắm )
= \(\frac{2c}{b}+\frac{2b}{c}+\frac{b+c}{a}+2\)
=\(\frac{2\left(b+c\right)^2}{bc}+\frac{b+c}{a}-2>7\left(VL\right)\)
=>b+ c > a => a ; b ; c là 3 cạnh tam giác ( đpcm )