Tìm x
\(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+14}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{1}{x+2}-\frac{1}{x+14}\)
\(\Leftrightarrow\frac{x}{\left(x+2\right)\left(x+14\right)}=\frac{\left(x+14\right)-\left(x+2\right)}{\left(x+2\right)\left(x+14\right)}\)
\(\Leftrightarrow x=\left(x+14\right)-\left(x+2\right)\)
\(\Leftrightarrow x=x+14-x-2\)
\(\Leftrightarrow x=\left(x-x\right)+\left(14-2\right)\)
\(\Leftrightarrow x=0+12\)
\(\Leftrightarrow x=12\)
=>\(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{x+14-x-2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>\(\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=>x=12
Ta có: \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x-2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=12\)
Vậy \(x=12\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{x+16}{\left(x+2\right)\left(x+14\right)}-\frac{x+2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(=\frac{8}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=8\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}-\frac{1}{x+8}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+16}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{\left(x+16\right)-\left(x+2\right)}{\left(x+2\right)\left(x+16\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x+16-x-2=x\)
\(\Rightarrow x=14\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right)\left(x+14\right)}-\frac{x+2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
=> x = 12
ĐKXĐ:\(x\ne\left\{-2;-4;-8;-14\right\}\)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+4\right)}\)
\(\Leftrightarrow2\left(x+8\right)\left(x+14\right)+4\left(x+2\right)\left(x+14\right)+6\left(x+2\right)\left(x+4\right)=x\left(x+8\right)\left(x+14\right)\)
\(\Leftrightarrow2x^2+44x+224+4x^2+64x+112+6x^2+36x+48=x^3+22x^2+112x\)
\(\Leftrightarrow12x^2+144x+384=x^3+22x^2+112x\)
\(\Leftrightarrow x^3+22x^2-12x^2+112x-144x-384=0\)
\(\Leftrightarrow x^3+10x^2-32x-384=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2+16x+64\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+8\right)^2=0\)
\(\Leftrightarrow x=6\)(x=-8 loại vì x=-8 thì PT không xác định)
\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow x=12\)