K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\\ =6x^2y+2y^3=2y\left(3x^2+y^2\right)\)Vậy \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)

16 tháng 8 2018

a. -(b-a)3= -b3+a3 (phá ngoặc trước có dấu trừ nên đổi dấu)

= a3 - b3 = (a-b)3

31 tháng 8 2018

b)

\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right)b+b^2\\ =a^2+2ab+b^2=\left(a+b\right)^2\)

28 tháng 6 2017

a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)

Ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(=-\left(b^3-3ab^2+3a^2b-a^3\right)\)

\(=-\left(b-a\right)^3\)

Vậy..

c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

Ta có: \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)

\(=x^3-6x^2y+9xy^2+y^3+y^3-6xy^2+9x^2y\)

\(=x^3-3x^2y\left(2-3\right)+3xy^2\left(3-2\right)+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(=\left(x+y\right)^3\)

Vậy..

d)\(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)

Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2+x^2+y^2\right)\)

\(=2y\left(y^2+3x^2\right)\)

Vậy...

28 tháng 6 2017

b đề bị gi` thế

22 tháng 2 2020

a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )

b, Ta có : \(6x^2y=6x^2y\)

=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)

=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )

c, Ta có : \(6x-6y=6x-6y\)

=> \(6x-6y=-6y+6x\)

=> \(6\left(x-y\right)=-6\left(y-x\right)\)

=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)

=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )

22 tháng 2 2020

thank you

7 tháng 10 2018

phân tích vế phải bằng vế trái

7 tháng 10 2018

Bạn xem đề kĩ lại nhé

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

27 tháng 12 2021

a.Vì x-2(y-1) = 3x <=> -2(y-1) = -2x <=> y-1=x

Thay vào, ta có (y-1)-2(y-1) = 3(y-1) <=> -(y-1) = 3(y-1)

<=> y-1 = 0 <=> y = 1 => x = 0

b.Ta có 3(x+1)−2y = 5−y <=> 3x+3-2y = 5-y

<=> 3x-2y = 2-y <=> -2y = 2-y-3x(1)

Lại có 4x−2(y+1) = −3 <=> 4x-2y-2 = -3

<=> 4x-2y = -1 <=> -2y = -1-4x(2)
Từ (1) và (2), ta có 2-y-3x = -1-4x <=> -1-x = 2-y

<=> -x+y = 3 <=> x-y = -3

Lại có 4x−2(y+1) = −3 => 4x-2(y+1) = x-y

<=> 4x-2y-2 = x-y <=> 3x-y = 2

Mà x-y = -3 => (3x-y)-(x-y) = -5

=> 2x = -5 <=> x = -5/2 => y = 1/2

Vậy...

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

22 tháng 8 2017

mann nào trả lời đc thui k hết 5 cái nick lun :D

22 tháng 8 2017

\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)

\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)

\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)

\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)

\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)

\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)

\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)

\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)

\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)

\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)

\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)

\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)

\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)

\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)

\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)