Làm tính chia
\(\left[7\left(2x-5y\right)\left(2x+5y-2\right)\left(14x^2-3y^2\right)\right]:\left(-3y\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ PT (2) suy ra $x=3y+1$
Từ PT (1) suy ra \(\left[{}\begin{matrix}2x+3y-2=0\\x-5y-3=0\end{matrix}\right.\)
Nếu $2x+3y-2=0$. Thay $x=3y+1$ vô thì:
$2(3y+1)+3y-2=0$
$\Leftrightarrow 9y=0\Leftrightarrow y=0$.
$x=3y+1=3.0+1=1$. HPT có nghiệm $(x,y)=(1,0)$
Nếu $x-5y-3=0$. Thay $x=3y+1$ vô thì:
$3y+1-5y-3=0$
$\Leftrightarrow -2y-2=0\Leftrightarrow y=-1$
$x=3(-1)+1=-2$. HPT có nghiệm $(x,y)=(-2; -1)$
a) \(\left(x+3y\right)\left(2x^2y-6xy^2\right)\)
\(=x\left(2x^2y-6xy^2\right)+3y\left(2x^2y-6xy^2\right)\)
\(=2x^3y-6x^2y^2+6x^2y^2-18xy^3\)
\(=2x^3y-18xy^3\)
b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)
\(=6x^5y^2:3x^3y^2-9x^4y^3:3x^3y^2+15x^3y^4:3x^3y^2\)
\(=2x^2-3xy+5y^2\)
c) \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)
\(=\left(2x+3-2x-5\right)^2\)
\(=\left(-2\right)^2=4\)
d) \(\left(y+3\right)^3-\left(3-y\right)^2-54y\)
\(=y^3+9y^2+27y+27-\left(x^2-6x+9\right)-54y\)
\(=y^3+9y^2-27y+27-x^2+6y-9\)
\(=y^3+9y^2-x^2-21y+18\)
Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)
<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)
<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)
Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)
Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!
Xét \(y=0\)\(\Rightarrow...\)
Xét \(y\ne0\). Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2), ta có:
\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)
\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)
\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)
Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành
\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)
1A,B,D
2 M=2
3 \(=\dfrac{3}{4x}\)
4 \(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)
5 K rút gọn đc
6 \(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\left|3y+1\right|\ge0\forall y\)
Do đó: \(\left|2x-5\right|+\left|3y+1\right|\ge0\forall x,y\)
mà \(\left|2x-5\right|+\left|3y+1\right|=0\)
nên \(\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{5}{2}\) và \(y=\frac{-1}{3}\)
b) Ta có: \(\left|3x-4\right|\ge0\forall x\)
\(\left|3y-5\right|\ge0\forall y\)
Do đó: \(\left|3x-4\right|+\left|3y-5\right|\ge0\forall x,y\)
mà \(\left|3x-4\right|+\left|3y-5\right|=0\)
nên \(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
c) Ta có: |16-|x||≥0∀x
\(\left|5y-2\right|\ge0\forall y\)
Do đó: |16-|x||+|5y-2|≥0∀x,y
mà |16-|x||+|5y-2|=0
nên \(\left\{{}\begin{matrix}\text{|16-|x||}=0\\\left|5y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-\left|x\right|=0\\5y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=16\\5y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{16;-16\right\}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{16;-16\right\}\) và \(y=\frac{2}{5}\)
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
\(=\left[7\left(4x^2-25y^2-4x+10y\right)\left(14x^2-3y^2\right):\left(-3y\right)\right]\)
\(=\dfrac{7\left(56x^2-362x^2y^2+75y^4-56x^3+12xy^2-140x^2y-30y^3\right)}{-3y}\)
\(=\dfrac{7\left(56x^2-362x^2y^2+75y^4-56x^3+12xy^2-140x^2y-30y^3\right)}{-3y}\)
\(=\dfrac{-392x^2}{3y}+\dfrac{2534}{3}x^2y-175y^3+\dfrac{392}{3}x^3:y-28xy+\dfrac{980}{3}x^2+70y^2\)