Chứng minh rằng :
với mọi số nguyên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d
\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)
Mà n4 + 3n2 + 1 \(⋮\)d
= n4 + 2n2 + n2 + 1
= ( n4 + 2n2 + 1 ) + n2
= ( n2 + 1 ) 2 + n2 \(⋮\)d
\(\Rightarrow\)n2 \(⋮\)d
\(\Leftrightarrow\)1 \(⋮\)d
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
ta có n4+3n2+1=(n3+2n)n+n2+1
n3+2n=(n2+1)n+n
n2+1=n.n+1
n=1.n
vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)
Gọi d là ƯC(n3+2n;n4+3n2+1)
n3+2n chia hết d;n4+3n2+1 chia hết d
n(n3+2n) chia hết d ; n4+3n2+1 chia hết d
n4+2n2 chia hết d; n4+3n2+1 chia hết d
(n4+3n2+1) - (n4+2n2) chia hết d
n2+1 chia hết d
n(n2+1) chia hết d
n3+n chia hết d
(n3+2n)-(n3+n) chia hết d
n chia hết d
n2 chia hết d
(n2+1)-(n2) chia hết cho d
1 chia hết d
d=1
PS tối giản
Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :
+) \(n^3+2n⋮d\)
\(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\) (1)
Và \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)