K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

Tam giác ABH vuông tại H. Áp dụng Pitago

\(\Rightarrow AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)

=> AH = 12 (cm)

2 tháng 11 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

BC2=AB2+AC2BC2=AB2+AC2

⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

⇒AB2=BH.BC⇒AB2=BH.BC

⇒BH=AB2BC=15225=9(cm)

13 tháng 8 2016

a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)

                          \(BC^2=25^2=625\)

=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)

b)Xét ΔABH vuông tại H(gt)

=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)

=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)

=>HB =16

Có BC=BH+HC

=>HC=BC-BH=25-16=9

 

13 tháng 8 2016

A B C H

a) Xét \(\Delta ABC \) có:

\(BC^2=25^2=625\)

\(AB^2+AC^2=20^2+15^2=625\)

\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)

\(\Rightarrow\)\(\Delta ABC\) vuông tại  A.

b) Xét \(\Delta ABH\) có: \(AH \perp BC\)

\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)

\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)

\(\Rightarrow BH^2=20^2-12^2\)

\(BH^2=256\)

\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)

 

Ta có:

\(BH+HC=BC\) (H nằm giữa B và C)

\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)

\(\Rightarrow HC=25-16\)

\(HC=9\left(cm\right)\)

 

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

4 tháng 10 2021

Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\end{matrix}\right.\)

4 tháng 10 2021

undefined

13 tháng 7 2017

A)   AB=\(5\sqrt{34}\left(cm\right)\)  \(BC=34\left(cm\right)\)   \(CH=9\left(cm\right)\)  \(AC=3\sqrt{34}\left(cm\right)\)

b)  BẠN VIẾT SAI ĐỀ Ở Í b RỒI (AB) KO THỂ NHỎ HƠN (BH) ĐƯỢC

bạn xem lại đi nha !!!

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm

7 tháng 7 2015

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

7 tháng 7 2015

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

22 tháng 3 2020

a)  HC=BC-BH=25-9=16 (cm)

Xét \(\Delta\)BHA có:

AH2=AB2-BH2=152-92=144

\(AH=\sqrt{144}=12\left(cm\right)\)

Xét \(\Delta\)AHC có:

AC2=AH2+HC2=122+162=400

=> AC=20(cm)

b) AB2+AC2=152+202=625

BC2=252=625

=> BC2=AB2+AC2

=> \(\Delta\)ABC vuông tại A (đpcm)