K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

a) 4x - 15 = -75 -x

   4x+x = -75 + 15

   5x = 60

     x= 60: 5

  => x= 12

b) 3| x-7| = 21

      |x-7|= 21:3

      |x-7|=7

  => x-7 =7 hoặc x-7=-7

 +) x-7=7

     x=7+7=14

  +) x-7=-7

      x= -7+7=0

=> x=14 hoặc x=0

c) Áp dụng t/c phân số bằng nhau 

=> x= \(\frac{-3.\left(-2\right)}{6}\)=\(\frac{6}{6}\)=1

Thay x=1 => y= \(\frac{\left(-2\right).\left(-18\right)}{1}\)=\(\frac{36}{1}\)=36

Thay y =36 => z=\(\frac{\left(-18\right).24}{36}\)=\(\frac{-432}{36}\)=-12

vậy (x,y,z)= (1;36;-12)

(câu d dài quá vs lại cx dễ nên bn tự lm nha mk chỉ giúp đến đây thôi)

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

22 tháng 11 2016

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

22 tháng 11 2016

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 

8 tháng 10 2016

\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)

\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)

\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)

\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)

Vậy ...

8 tháng 10 2016

Có: \(2x=3y=5z\)

=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)

=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)

 

8 tháng 10 2016

a) 2x = 3y = 5z 

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số = nhau , ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)

=> x = 3.(-33/10) = -99/10 

     y = 5.(-33/10) = -165/10

     z = 2.(-33/10) = -66/10