K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Help me TT 

15 tháng 8 2018

Giúp mk vs ? 

\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-\left(4n^2-20n+25\right)=25n^2-20n+4-4n^2+20n-25=21n^2-21=21.\left(n^2-1\right)⋮21\left(đpcm\right)\)

Đề bài phải là chia hết cho 21 chứ !!

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

17 tháng 6 2016

d) Gọi d là ƯCLN của n+1 và 2n+3, ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) chia hết cho d

=> 2n+3-2n-2 chia hết cho d

=> 2n-2n+3-2 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy n+1/2n+3 là 2 phân số tối giản 

e) Gọi d là UwCLN của 2n+3 và 4n+8, ta có:

(4n+8)-(2n+3) chia hết cho d

4n+8-2(2n+3) chia hết cho d

4n+8-4n-6 chia hết cho d

4n-4n+8-6 chia hết cho d

2 chia hết cho d => d=2

nhưng vì 2n+3 lẻ nên d là số lẻ => d=1

vậy 2n+3/4n+8 là 2 phân số tối giản

f) gọi d là ưcln của 3n+2 và 5n+3, ta có

(3n+2)-(5n+3) chia hết cho d

5(3n+2)-3(5n+3) chia hết cho d

15n+10-15n-9 chia hết cho d

15n-15n+10-9 chia hết cho d

1 chia hết cho d => d=1

vậy 3n+2/5n+3 là 2 phân số tối giản 

17 tháng 6 2016

Có j để chứng minh âu!!!!

29 tháng 8 2021

Giúp mình với mn

 

29 tháng 8 2021

\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)

Suy ra ĐPCM

 

Cmtt với c,d

 

1 tháng 7 2019

Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)

Vậy khẳng định đúng với n=1.

Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)

Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:

\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)

\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)

\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)

Mà \(\left(m^3+3m^2+5m\right)⋮3\)

\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)

Do đó khẳng định đúng với n=m+1.

Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)

1 tháng 7 2019

\(\forall n\ge1,n\in N\)

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1) (n+2)  tích của 3 số tự nhiên liên tiếp

=> n( n+1) (n+2) chia hết cho 3

và 3n c hia hết cho 3

=> \(n^3+3n^2+5n\) chia hết cho 3

18 tháng 12 2021

a, Với n = 1 ta có 3 ⋮ 3.

Giả sử n = k ≥ 1 , ta có :  k+ 2k ⋮ 3 ( GT qui nạp).

Ta đi chứng minh : n = k + 1 cũng đúng: 

(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2

                           = (k^3+2k) + 3(k^2+k+1)

Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên) 

             + 3(k^2+k+1) hiển nhiên chia hết cho 3 

Vậy mệnh đề luôn chia hết cho 3.

b, Với n = 1 ta có 12 ⋮ 6.

Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6

Ta đi chứng minh : n = k+1 cũng đúng: 

=> 13k.13 - 1 = 13(13k - 1) + 12.

Có: - 13(13k - 1) ⋮ 6 ( theo gt)

       - 12⋮6 ( hiển nhiên)

> Vậy mệnh đề luôn đúng.