Chứng minh rằng với mọi số tự nhiên n thì 9^n+1 không chia hết cho 2016.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này cũng không khó nếu mình dùng cách chứng mình như sau
với n=0 ta luôn luôn có 9\(9^{0+1}=9\) không chia hết cho 2016
giả định với n=k ta có mệnh đề 9k+1 không chia hết cho 2016 đặt mệnh đề là A
TIẾP tục ta cần chứng minh với n=k+1 cũng không chia hết cho 2016
thật vậy \(9^{k+1+1}=9A\)
MÀ THEO dữ kiện với A Không chia hết cho 2016 9 không chia hết cho 2016
nên 9k+1+1 cũng không chia hết cho 2016
hay với mọi số tự nhiên n thì 9n+1 không chia hết cho 2016
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
TH1 : Xét : n lẻ
Tổng hai số lẻ sẽ là số chẵn nên n lẻ + 2015 ( số lẻ ) sẽ chẵn
Tổng hai số lẻ và số chẵn sẽ là số lẻ nên n + 2016 ( số chẵn ) sẽ lẻ
Mà tích hai số chẵn , lẻ luôn bằng số chẵn nên chia hết cho 2
Vậy : { n + 2015 } . { n + 2016 } chia hết cho 2 ( ĐPCM )
TH2 : Xét : n chẵn
Tổng hai số chẵn , lẻ sẽ là số lẻ nên n + 2015 ( lẻ ) sẽ là số lẻ
Tổng hai số chẵn sẽ là số chẵn sẽ là số chẵn nên n + 2016 ( số chẵn ) sẽ chẵn
Mà tích hai số lẻ , chẵn luôn bằng số chẵn
Vậy : { n + 2015 } . { n + 2016 } chia hết cho 2 ( ĐPCM )
+ Nếu n là lẻ => n + 2015 là chẵn
=> n + 2015 chia hết cho 2
=> (n + 2015)(n + 2016) chia hết cho 2.
+ Nếu n là chẵn => n + 2016 là chẵn
=> n + 2016 chia hết cho 2.
=> (n + 2015)(n + 2016) chia hết cho 2.
Vậy (n + 2015)(n + 2016) luôn chia hết cho 2 với mọi n
a) Ta có :n2+n+2014=n(n+1)+2014
Vì n và n+1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2 và 2014 chia hết cho 2 nên n(n+1)+2014 chia hết cho 2(đpcm)
Nếu n lẻ
=> n+2015=chẵn
n+2016=lẻ
=>(n+2015).(n+2016)=chẵn chia hết cho 2 (chẵn .lẻ =chẵn)
Nếu n lẻ
=> n+2015=lẻ
n+2016=chẵn
=>(n+2015).(n+2016)=chẵn chia hết cho 2 (chẵn .lẻ =chẵn)
Vậy với mọi số tự nhiên thì A=(n+2015).(n+2016) chia hết cho 2
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
Lời giải:
Để \(9^n+1\vdots 2016\) thì trước hết \(9^n+1\) phải chia hết cho $9$ vì $2016$ chia hết cho $9$
Mà hiển nhiên \(9^n+1\not\vdots 9\) với mọi số tự nhiên $n$
Do đó \(9^n+1\not\vdots 2016, \forall n\in\mathbb{N}\) (đpcm)